Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Device Turns Flat Surface into Spherical Antenna

15.04.2014

Broadband Transformational Optics Lens, Described in "Applied Physics Letters," May Lead to Antenna Dishes that are Flat or Conform to Any Surface

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves the same way an antenna does.


T.J. Cui/Southeast University Nanjing

CAPTION The prototype of the fabricated metasurface lens shown with simulated x components of electric fields at 9 GHz with the source placed at the bottom left, right and center of the lens.

This breakthrough, which the team is calling the first broadband transformation optics metasurface lens, may lead to the creation of new types of antennas that are flat, ultra low-profile or conformal to the shape of curved surfaces.

The new lens, described in AIP Publishing's journal Applied Physics Letters, was fabricated by Tie Jun Cui and colleagues at Southeast University in Nanjing, China and is an example of a metasurface or metamaterial -- an artificial material engineered in the lab that has properties not found in nature. In this case, by coating the surface with the tiny U-shaped elements, it acquires properties that mimic something known as a Luneburg lens.

... more about:
»AIP »Device »Flat »Physics »Surface »glass »optics »plastic »structures »waves

First discovered in the 1940s Luneburg lenses are traditionally spherical optics that interact with light in an unusual way. Most lenses are made of a single material like plastic or glass that bends light passing through in a consistent, characteristic way -- a key characteristic of the material, which is called its "index of refraction." Some materials, like glass, have a higher index of refraction and bend light more than other materials -- such as quartz.

A Luneburg lens has the unusual property of bending light more or less depending on where the light strikes the lens. This is because in a Luneburg lens, the index of refraction varies across the spherical lens body, making it very different than a normal lens. Luneburg lenses can focus light or incoming electromagnetic waves to an off-axis point at the edge of the lens (not directly in front or behind it as a normal lens would do). Or they can uniformly channel electromagnetic waves emanating from a nearby point source and radiate them in a single direction -- something no spherical lens can do.

Because of their properties, Luneburg lenses find a variety of applications as radar reflectors and microwave antennae. However, the spherical shape of a typical Luneburg lens is inconvenience in some applications, Cui said, which is why he and his colleagues used inhomogeneous artificial structures to create a flat surface that acts like a Luneburg lens.

The new work compliments the traditional way of constructing Luneburg lenses based on geometric optics -- as well as a second way discovered in the last few years that uses holographic optics.

"We now have three systematical designing methods to manipulate the surface waves with inhomogeneous metasurfaces, the geometric optics, holographic optics, and transformation optics," Cui said. "These technologies can be combined to exploit more complicated applications."

The article, "A broadband transformation-optics metasurface lens" by Xiang Wan, Wei Xiang Jiang, Hui Feng Ma, and Tie Jun Cui appears on the cover of the journal Applied Physics Letters on April 14, 2014 (DOI: 10.1063/1.4870809). After that date it can be accessed at: http://scitation.aip.org/content/aip/apl/104/15/10.1063/1.4870809

ABOUT THE JOURNAL
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Jason Socrates Bardi | newswise

Further reports about: AIP Device Flat Physics Surface glass optics plastic structures waves

More articles from Physics and Astronomy:

nachricht Merging galaxies break radio silence
28.05.2015 | ESA/Hubble Information Centre

nachricht New Technique Speeds NanoMRI Imaging
28.05.2015 | American Institute of Physics (AIP)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>