Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Determining the quantum geometry of a crystal

LMU/MPQ-physicists succeed in measuring geometric properties of energy bands in light crystals.

Geometrical phases occur in many places in nature. One of the simplest examples is the Foucault pendulum: a tall pendulum free to swing in any vertical plane.

Fig. 1

Due to the earth rotation, the actual plane of swing rotates relative to the earth. One observes that every day the plane of rotation changes by a small “geometric” angle, associated to the spherical shape of the earth.

In quantum mechanics a similar effect was discovered in 1984 by the British physicist Sir Michael Berry, who identified a geometrical phase in quantum-mechanical problems that is today known as the “Berry’s phase”.

Such quantum-mechanical phases can have a profound effect on material properties and are responsible for a variety of phenomena. Some examples are the dielectric polarization or the quantum Hall effect, with the latter one being used nowadays to define the standard of resistance. For the first time, scientists in the group of Professor Immanuel Bloch (Ludwig-Maximilians-University, Munich and Max-Planck-Institute of Quantum Optics, Garching) in close collaboration with theoretical physicists from Harvard University in the group of Professor Eugene Demler have succeeded in measuring such a phase in a one dimensional solid-state like system. This phase is known as the “Zak-phase” named after the Israeli physicist Joshua Zak (Nature Physics, AOP DOI:10.1038/nphys2790).

Two objects have a different topological structure if there is no continuous way to transform one to the other without cutting it or punching holes in it. For example, a tee cup with a single hole in the handle and a bagel are topologically equivalent, but a bagel and a soccer ball are not. Furthermore, the different topological structures can be characterized by the geometric phases associated with the shape of the object. But, what do these geometric phases have to do with the properties of a real material? “In a material, the atoms are organized forming a periodic structure where the electrons experience the electric forces of the ions. As a result, the electrons “move” inside the material in so-called energy bands, which play the role of the objects in the examples above,” explains Marcos Atala, a senior PhD student at the experiment.

In 1989, Israeli Physicist Joshua Zak identified the geometrical phases in the band theory of one-dimensional solids: when a particle travels “slowly” across the energy band and completes a closed loop, it acquires a geometrical phase that has striking physical consequences for the properties of materials: light transmission, electrical conduction, or response to a magnetic field can all be determined by the “quantum geometry” of the crystal. Therefore the identification of the topological properties of a band is fundamental for understanding its physical properties.

In their experiments, an extremely cold gas of rubidium atoms was loaded into an optical lattice: a periodic structure of bright and dark areas, created by the interference of counter-propagating laser beams. In this lattice structure, the atoms are held in either dark or bright spots, depending on the wavelength of the light, and therefore align themselves in a regular pattern. The resulting periodic structure of light resembles the geometry of simple solid state crystals where the atoms play the role of the electrons. The use of an additional light field with twice the spatial period allowed the scientists to create an optical superlattice in which the periodic structure has a regular pattern of low- and high-energy barriers similar to a polyacetylene molecule, which possesses rich topological properties.

In order to measure the Zak phase, the Munich researchers implemented a protocol proposed by the team of their Harvard colleagues in the group of Eugene Demler. The measurement idea used by the team is in fact closely related to the working principle of an optical interferometer. There, a light beam is split and allowed to propagate along two paths. Recombining and overlapping the two beams leads to an interference pattern in which the phase of the resulting interference stripes is determined by the phases acquired by the light waves during propagation along the two paths. Taking advantage of the laws of quantum-mechanics that allow a single particle to be in two states at the same time, in their experiments the researchers prepare the system in a superposition of spin up and spin down. A force, which depends on the spin state of the atom, is then applied such that the two components of the atom explore the energy band in different directions (See Fig. 1). During their motion through the band, the particles pick up the Zak phase that is determined by the quantum geometry of the band. Similar to the optical interferometer, interfering the two spin components of the atom, the researchers were directly able to reveal the geometric phase of the crystal.

Previously, the measurement of geometric phases in solids could only be carried out indirectly, and required a filled energy band for the measurement. With this new method, only single particles are required. These need to be transported gently through the energy band such that they can explore the underlying quantum geometry of the crystal. Eugene Demler and his team also pointed out simple generalizations of this scheme to higher dimensions or even problems including many interacting particles. “This new measurement scheme establishes a new general approach for studying the topological structure of Bloch bands in solids,” points out Immanuel Bloch. The new experimental probes might thus lead to the discovery of novel topological phases of quantum matter with unique properties that may be useful for practical applications.

Fig 1: Representation of a particle traveling across the energy band. Blue and red colors denote spin up and spin down particles. During the experiment the particles travel from the center to the edges of the band and acquire the geometrical Zak phase. The blue background represents the superlattice structure used in the experiment.

Original publication:
Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya Kitagawa, Eugene Demler and Immanuel Bloch
Direct measurement of the Zak phase in topological Bloch bands
Nature Physics, AOP DOI:10.1038/nphys2790
Prof. Dr. Immanuel Bloch
Chair of Quantum Optics, LMU Munich
Schellingstr. 4, 80799 München, and
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching b. München, Germany
Phone: +49 (0) 89 / 32 905 -138
Prof. Dr. Eugene Demler
Lyman Laboratory, Department of Physics,
Harvard University, 17 Oxford St.,
Cambridge, MA 02138
Phone: (617) 496-1045
Dipl. Phys. Marcos Atala
LMU Munich
Phone: +49 89 2180 6133
Dr. Olivia Meyer-Streng
Press & Public Relations
Max-Planck-Institute of Quantum Optics
Phone: +49 (0) 89 32 905 -213

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>