Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determining ion beam effects to greater precision: Researchers conduct high-res analyses on lesions in tissue

23.09.2015

A precise understanding of how ion beams affect biological tissue is of great importance for both radiotherapy applications and the assessment of radioprotection risks, e.g. to astronauts on long term missions in space. The radiation biology and biophysics research groups headed by Professor Markus Löbrich (TU Darmstadt) and Professor Marco Durante (GSI) respectively were the first to conduct experimental high resolution analyses on the 3D lesion distribution induced by high energy ion beams in biological tissue and to compare these with theoretical model predictions.

The biological effects of radiation consist in the damage caused to genetic information (DNA) contained in every cell nucleus. However, cells feature powerful repair mechanisms that can undo a lot of the damage caused by radiation.


Scientists from Darmstadt were the first to analyse 3D lesion distribution in biological tissue on the submicrometre level. Picture: Thanh Nguyen

That ion beams can induce greater effects than conventional photon (e.g. X ray) radiation can be explained by the extremely high energy they emit over a very small space around the ions’ path. In other words, ion beams can induce highly complex local damage that is far more resistant to repair efforts than the damage caused by photon radiation.

The conceptions favoured to date of ion beam induced 3D lesion patterns are based above all on theoretical considerations deduced from measurements of physical properties. There are no measurement data available for biological systems.

In a joint research project, scientists at the TU Darmstadt and GSI Hemholtzzentrum für Schwerionenforschung were the first to analyse 3D lesion distribution in biological tissue on the submicrometre level and to compare their findings with theoretical predictions. The radiation experiments at GSI used high energy ion beams with the same characteristics as the cosmic radiation in space.

Identification with marker

The analyses were conducted on a tissue with a particularly high density of cell nuclei, facilitating a virtually continuous detection of DNA damage. The identification of damage involved the use of a marker for the most serious form of biological damage, the DNA double strand break, causing the irreversible loss of key genetic information. This experimental approach can visualise the traces of ion induced DNA damage over many cells. The measurements show clearly the concentration of damage at the centre of the ion path and a rapidly declining lesion frequency away from this.

Effects predicted to greater precision

On the one hand, these biological findings confirm the assumptions of 3D lesion distribution based on measured physical properties. On the other, they can be used for a critical analysis and quasi calibration of the various prediction models. These data provide an essential constituent of a model for the prediction of radiation efficacy that was developed by GSI physicists and applied for treatment planning at the ion beam therapy centres in Heidelberg, Marburg, Pavia, and Shanghai for their tumour treatment schedules.

Further information
All details can be found in “Direct Measurement of the 3-Dimensional DNA Lesion Distribution Induced by Energetic Charged Particles in a Mouse Model Tissue” by Johanna Mirsch, Francesco Tommasino, Antonia Frohns, Sandro Conrad, Marco Durante, Michael Scholz, Thomas Friedrich, and Markus Löbrich published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS):
http://www.pnas.org/content/early/2015/09/17/1508702112.abstract

MI-Nr. 62e/2015, ml/feu

Weitere Informationen:

http://www.pnas.org/content/early/2015/09/17/1508702112.abstract publication online

Silke Paradowski | Technische Universität Darmstadt
Further information:
http://www.tu-darmstadt.de/

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>