Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Determine chemical composition of a type of red giant star with more carbon than oxygen

14.01.2010
Researchers of the University of Granada have conducted the most complete worldwide analysis of the chemical composition and evolutionary state of a spectral type R carbon star
The presence of carbon is essential for the possible development of life in the Universe, and therefore explaining its origin is of vital importance

What are the peculiar type-R stars made? Where does the carbon present in their shell come from? These are the questions to be solved by a research work conducted by scientists of the department of Theoretical and Cosmos Physics of the University of Granada (Spain), where they have analysed the chemical composition and the evolutionary state of spectral type R carbon stars to try to explain the origin of the carbon enrichment present in its atmosphere.

Up to now, there had hardly been performed chemical analysis for this type of start. Type-R stars are peculiar red giant stars, as they show a higher presence of carbon than oxygen in their atmosphere (the usual composition in the Universe is exactly the opposite). They can be classified in hot-R starts and cold-R stars, depending on their effective temperature.

In the case of R-cold stars, this is the first chemical analysis of these characteristics carried out worldwide, whereas for R-hot stars, the existing chemical analyses were very old (more than 25 years) and with a lower spectral resolution than that of the UGR study.

The research has been conducted by Olga Zamora Sánchez and supervised by professors Carlos Abia and Inmaculada Domínguez. The scientists of the University of Granada have also studied the essential observational features of type-R stars (distribution in the Milky Way, kinematics, luminosity, etc.) .

A 23-star sample
This research work has determined the chemical composition of a 23 type-R star sample (both hot and cold), using spectrums in the optics with high-spectral resolution, in order to obtain information about the origin of this type of stars. To this end, the scientists performed observations with a 2.2-metre in diameter telescope placed in Calar Alto (Almeria), and carried out a chemical analysis of elements such as carbon, oxygen, nitrogen, lithium and other heavy metals, such as technetium, strontium, barium or lanthanum.

Thus, the scientists have concluded that R-cold stars are identical to type-N stars (or normal carbon stars) originated in the AGB phase, whereas R-hot stars are different. About 40% of the R-hot stars of the sample were erroneously classified up now, and therefore the portion of these stars with regard to red giant stars could be considerably reduced regarding previous estimations thanks to this work.

The most comprehensive analysis
The analysis of the University of Granada is the most complete conducted worldwide up to now (from an observational and theoretical approach) about type-R spectral stars. Besides, the scientists have carried out a numeric simulation for the first time of the most favourable scene for the formation of a R-hot star: the fusion of a helium white dwarf with a red giant. In the end, this scene has turned out to be unviable, and therefore the explanation of the origin of R-hot stars keeps representing a challenge for present star and nucleosynthesis development models.

Although the UGR scientists warn that this type of study has not immediate applications, the information obtained could be very valuable in the future as carbon, as everybody knows, is very important for the possible development of life in the Universe. Therefore, they say, explaining the origin of this element in the stars will be useful to study the production of one of the basic ingredients of life that we know.

The results of this research work will be sent for its publication in the near future in the journal Astronomy & Astrophysics.

Reference: Olga Zamora Sánchez. Department of Theoretical and Cosmos Physics of the University of Granada. Telephone number: 958249062. E-mail: zamora@ugr.es

Olga Zamora Sánchez | EurekAlert!
Further information:
http://www.ugr.es

Further reports about: Cosmos Milky Way Physic R-cold UGR carbon stars chemical composition giant stars red giant stars

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>