Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detection of single photons via quantum entanglement

08.07.2013
A team of quantum physicists in Innsbruck led by Christian Roos and Cornelius Hempel have realised an extremely sensitive method for the spectroscopy of atomic and molecular atoms. This technique can be used to closely study a number of particles. The scientists have published their findings in the journal Nature Photonics.

Almost 200 years ago, Bavarian physicist Joseph von Fraunhofer discovered dark lines in the sun’s spectrum. It was later discovered that these spectral lines can be used to infer the chemical composition and temperature of the sun’s atmosphere. Today we are able to gain information about diverse objects through light measurements in a similar way.


As a ‘quantum pendulum’ the ions swing in both directions at the same time.
Illustration: IQOQI/Knabl

Because often very little light needs to be detected for this, physicists are looking for ever more sensitive spectroscopy methods. In extreme cases, also single particles of light (photons) need to be measured reliably, which is technically challenging.

Thus, physicists at the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences and the Institute for Experimental Physics of the University of Innsbruck take a detour via the technique of quantum logic spectroscopy. It was developed some years ago by the group of Nobel laureate David Wineland to build extremely precise atomic clocks. This is one of the first practical applications of quantum information processing and, in the next few years, may lead to a redefinition of the second in the international system of units.

Measurement via entanglement
Christian Roos’ and Cornelius Hempel’s team of physicists in Innsbruck isolated single ions in an ion trap to study them under controlled conditions. “We do not try to detect the photon that is emitted or absorbed by an ion, but rather the momentum kick the ion receives upon absorption or emission,” explains Cornelius Hempel. “While this effect is extremely small, we can detect it by means of quantum physics.” The physicists use an additional ‘logic’ ion, on which the measurement is performed. “This calcium ion (40Ca+) can be controlled very well in the experiment,” says Hempel. As spectroscopy ion the researchers use another isotope of calcium (44Ca+).

In the experiment a laser pulse excites the particles and entangles the electronic state of the logic ion with the vibration of the particles. “In this configuration, also called Schrödinger cat state, the ions swing like a classical pendulum in a trap. But as a ‘quantum pendulum’ they swing in both directions at the same time,” describes Hempel the central part of the experiment. “We then excite the ion we want to investigate by applying different laser frequencies. At a certain frequency the ion emits a single photon and receives a minimal momentum kick, which causes the vibrational components to be slightly displaced. This can be observed through the electronic state of the logic ion. Combined with this information, the frequency of the laser then allows us to gain information about the internal state of the spectroscopy ion.” In the current experiment the scientists detected single photons with a probability of 12 %. “We, thus, prove that this technique works in principal. With a technically optimized set-up we will be able to considerably increase the sensitivity,” say Roos and Hempel confidently.

Universal application
“By using the exotic concept of quantum mechanical entanglement we are able to gain practical knowledge about single particles,” says Christian Roos excitedly. “Since our method of measurement does not depend that much on the wave length of the detected photon, it may be used for various purposes,” adds Cornelius Hempel. For example, energy levels of different atoms and molecules could be investigated by using this technique. Because it is difficult to control molecules in an experiment, this method is an enormous progress for studying more complex structures.

This research, carried out at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences and at the Institute for Experimental Physics at Innsbruck University, was supported by the European Union.

Publication: Entanglement-enhanced detection of single-photon scattering events. C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C. F. Roos. Advance online publication. Nature Photonics 2013 DOI: 10.1038/nphoton.2013.172

Illustration: http://iqoqi.at/de/medien/press-photos

Contact:
Dipl.-Phys. Cornelius Hempel, MSc
Institute for Quantum Optics and Quantum Information
of the Austrian Academy of Sciences
and
Institute for Experimental Physics
University of Innsbruck
Phone: +43 512 507 4722
Email: cornelius.hempel@uibk.ac.at
Web: http://www.quantumoptics.at/
Christian Flatz, PhD
Public Relations
Phone: +43 676 872532022
Email: pr-iqoqi@oeaw.ac.at
Weitere Informationen:
http://dx.doi.org/10.1038/nphoton.2013.172 - Entanglement-enhanced detection of single-photon scattering events. C. Hempel, B. P. Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt, C. F. Roos. Advance online publication. Nature Photonics 2013

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.quantumoptics.at/
http://www.uibk.ac.at

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>