Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting tiny twists with a nanomachine

04.11.2008
Nanoscale device may reveal spin-dependent fundamental forces and provide new methods of characterizing torque-generating molecules and DNA strands

Researchers at Boston University working with collaborators in Germany, France and Korea have developed a nanoscale torsion resonator that measures miniscule amounts of twisting or torque in a metallic nanowire.

This device, the size of a speck of dust, might enable measurements of the untwisting of DNA and have applications in spintronics, fundamental physics, chemistry and biology.

Spin-induced torque is central to understanding experiments, from the measurement of angular momentum of photons to the measurement of the gyromagnetic factor of metals and a very miniaturized – about 6 microns -- version of a gyroscope that measures the torques produced by electrons changing their spin states. It can be used to uncover new spin-dependent fundamental forces in particle physics, according to Raj Mohanty, Boston University Associate Professor of Physics.

"This is perhaps the most sensitive torque measurement every reported," said Mohanty. "The size of the torque measured by this experiment is smaller than the typical torque produced by the untwisting of a doubly-stranded DNA."

In a just released paper in Nature Nanotechnology entitled "Nanomechanical detection of itinerant electron spin flip," Mohanty and his research team developed a highly sensitive way to directly measure torque using microelectronic mechanical systems with spin electronics. Their approach was to detect and control spin-flip torque -- a phenomenon that occurs in a metallic nanowire, that is half ferromagnetic and the other is nonmagnetic. The spins of itinerant electrons are "flipped" at the interface between the two regions to produce a torque.

The team developed a microscopic spin-torsion device fabricated by electron beam lithography and nanomachining that mechanically measures the changes in spin states in a magnetic field. This device was operated at one tenth of a degree close to absolute zero.

The team has been working on demonstrating the opposite effect. Under the application of an external torque spin-up and spin-down electrons can be separated to two physically distinct locations, creating a spin battery. This is similar to a conventional charge battery with positive and negative polarities. When connected with an electrical path, electricity flows from one side to the other. But instead of electric current, the flow in the spin battery involves the spin – which can be used to store and manipulate information, the basis of an emerging technology called spintronics.

"The measurements with a nanoscale torsion resonator will be useful in uncovering new fundamental forces and, in theory, for characterizing torque producing molecules and DNA." said Mohanty.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>