Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Detecting mirror molecules

New technique reliably tells left-handed from right-handed variant of a compound

Harvard physicists have developed a novel technique that can detect molecular variants in chemical mixtures – greatly simplifying a process that is one of the most important, though time-consuming, processes in analytical chemistry.

As described in a paper in Nature, post-doctoral researcher David Patterson, Professor of Physics John Doyle and Dr. Melanie Schnell of the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany developed a system that relies on finely-tuned microwave fields to identify molecular variants apart, and to determine how much variant is in a mixture.

The ability to tell such variants apart, researchers said, is critical because many chemical compounds exist in two forms, each of which is a mirror image of the other. Such molecules are called chiral, from the ancient Greek for hand, and are often described as being either "right-handed" or "left-handed."

Knowing whether a molecule is right- or left-handed, scientists say, is important, because each type of molecule behaves differently in chemical reactions. Much of biology, for example, is predicated on the idea that amino acids are "left-handed," while sugar molecules are "right-handed."

"The 'wrong' sort of a compound can function completely differently in an organism," explains Schnell, who leads an independent Max Planck research group for structure and dynamics of molecules at CFEL. "In the best case it is just ineffective. In the worst case it is toxic."

The challenge, however, is that telling the two variants of a chiral molecule apart is no easy job.

A common way to discern between them is to shine linear polarised light through them. While one variant will turn the plane of polarisation to the left, the other will turn it to the right. The problem with that method, researchers say, is that it produces rather weak effects, and can only be used on liquid samples, and it can be difficult to use on samples that contain a mixture of many different species.

"It's an extremely common situation to have a mixture – say a blood sample, or something from a complex chemical process - that contains a left-handed version of some compounds and a right handed version others – for example, left handed alanine along with right handed citric acid. Optical polarimetery really struggles with such a situation – if there's more than about 3 compounds, it's pretty hopeless. We hope our technique will provide a tool which can produce a complete analysis of such a mixture".

In contrast, the method developed by Patterson, Doyle and Schnell, by comparison, relies on what is called the electric dipole moment of each molecule, or the way each interacts with an external electric field. As a consequence of their mirror-image construction, molecules rotate in opposite directions when certain microwave fields are applied – and this results in a signature which tells if the molecules are left or right handed.

To measure the dipole moment of molecules, the team used microwaves.

Researchers fed a gaseous sample into a chamber, then cooled it to -226 degrees Celsius. As the cold gas interacted with a precisely-tuned microwave fieldwhich caused the molecules to spin and give off their own microwave radiation. By monitoring those emissions, researchers are able to tell whether the molecules are right- or left-handed.

The researchers tested their method using the organic compound 1,2-propanediol, and were able to reliably differentiate between the two variants, but also determine the ratio of variants in a mixture by finely-tuning the microwave frequency.

"We can soon measure mixtures of different compounds and determine the enantiomer ratios of each," explains Schnell. In a next step the researchers plan to apply the technique in a broadband spectrometer at CFEL that could then measure the ratios in other mixtures of substances.

In the longer run, the method opens the exciting perspective to develop a technique for separating variants – a technique that, if successful, could be of great interest to a number of industries, particularly the development of new pharmaceuticals.

Peter Reuell | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>