Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting mirror molecules

23.05.2013
New technique reliably tells left-handed from right-handed variant of a compound

Harvard physicists have developed a novel technique that can detect molecular variants in chemical mixtures – greatly simplifying a process that is one of the most important, though time-consuming, processes in analytical chemistry.

As described in a paper in Nature, post-doctoral researcher David Patterson, Professor of Physics John Doyle and Dr. Melanie Schnell of the Center for Free-Electron Laser Science (CFEL) in Hamburg, Germany developed a system that relies on finely-tuned microwave fields to identify molecular variants apart, and to determine how much variant is in a mixture.

The ability to tell such variants apart, researchers said, is critical because many chemical compounds exist in two forms, each of which is a mirror image of the other. Such molecules are called chiral, from the ancient Greek for hand, and are often described as being either "right-handed" or "left-handed."

Knowing whether a molecule is right- or left-handed, scientists say, is important, because each type of molecule behaves differently in chemical reactions. Much of biology, for example, is predicated on the idea that amino acids are "left-handed," while sugar molecules are "right-handed."

"The 'wrong' sort of a compound can function completely differently in an organism," explains Schnell, who leads an independent Max Planck research group for structure and dynamics of molecules at CFEL. "In the best case it is just ineffective. In the worst case it is toxic."

The challenge, however, is that telling the two variants of a chiral molecule apart is no easy job.

A common way to discern between them is to shine linear polarised light through them. While one variant will turn the plane of polarisation to the left, the other will turn it to the right. The problem with that method, researchers say, is that it produces rather weak effects, and can only be used on liquid samples, and it can be difficult to use on samples that contain a mixture of many different species.

"It's an extremely common situation to have a mixture – say a blood sample, or something from a complex chemical process - that contains a left-handed version of some compounds and a right handed version others – for example, left handed alanine along with right handed citric acid. Optical polarimetery really struggles with such a situation – if there's more than about 3 compounds, it's pretty hopeless. We hope our technique will provide a tool which can produce a complete analysis of such a mixture".

In contrast, the method developed by Patterson, Doyle and Schnell, by comparison, relies on what is called the electric dipole moment of each molecule, or the way each interacts with an external electric field. As a consequence of their mirror-image construction, molecules rotate in opposite directions when certain microwave fields are applied – and this results in a signature which tells if the molecules are left or right handed.

To measure the dipole moment of molecules, the team used microwaves.

Researchers fed a gaseous sample into a chamber, then cooled it to -226 degrees Celsius. As the cold gas interacted with a precisely-tuned microwave fieldwhich caused the molecules to spin and give off their own microwave radiation. By monitoring those emissions, researchers are able to tell whether the molecules are right- or left-handed.

The researchers tested their method using the organic compound 1,2-propanediol, and were able to reliably differentiate between the two variants, but also determine the ratio of variants in a mixture by finely-tuning the microwave frequency.

"We can soon measure mixtures of different compounds and determine the enantiomer ratios of each," explains Schnell. In a next step the researchers plan to apply the technique in a broadband spectrometer at CFEL that could then measure the ratios in other mixtures of substances.

In the longer run, the method opens the exciting perspective to develop a technique for separating variants – a technique that, if successful, could be of great interest to a number of industries, particularly the development of new pharmaceuticals.

Peter Reuell | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>