Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting dusty clouds and stars in our galaxy in a new way

08.01.2013
Radio wave technique uncovers shadows of clouds and stars in Milky Way's center

The center of our Milky Way galaxy is a wondrous place full of huge star clusters, dust clouds, magnetic filaments and a supermassive black hole. But it can be a confusing place, too, posing challenges to astronomers trying to image these exotic features and learn more about where they are located in the galaxy.

Northwestern University's Farhad Zadeh has discovered a new tool for detecting dusty clouds and stars: simply take a picture using radio waves. He is the first to identify what he calls radio dark clouds and stars. Stars in the early and late phases of their evolution are shrouded by huge dusty envelopes in the form of dust and gas outflows.

"When you see these dark stars or clouds in radio wavelength images, it tells you something very interesting," Zadeh said. "We immediately know there is a cold gas cloud or dusty star mixing with a hot radiative medium and that an interaction is taking place. Knowing details of these clouds is important because the clouds can produce stars and also provide material for the growth of black holes."

Zadeh is a professor of physics and astronomy in the Weinberg College of Arts and Sciences and a member of Northwestern's Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

Unlike in the optical, X-ray and infrared wavelengths, it is unusual to see a dark feature with radio waves. Radio is a long wavelength and therefore doesn't get absorbed easily and typically passes through whatever is in its way.

Initially Zadeh thought maybe the dark features he saw on the radio images he was studying were nothing, but then he connected the features to five known dense molecular and dusty clouds located in the center of our galaxy, some near Sagittarius A* (Sgr A*), the black hole.

"This technique provides very good sensitivity of faint dusty features, and it can produce images with even higher resolution than many other telescopes," Zadeh said. "It is an initial observation that tells you something is there that needs to be studied more closely."

In addition, astronomers can measure the size of dusty stars using this new technique.

Zadeh will present his results at 11:30 a.m. PST (Pacific Standard Time) Tuesday, Jan. 8, at the 221st meeting of the American Astronomical Society in Long Beach, Calif. He also will participate in a press conference on the galactic center at 12:45 p.m. PST the same day.

The interaction of a cold dust cloud with a hot radiation field results in a loss in the continuum emission and appears as a dark feature in the radio wavelength image, Zadeh said. The dark features that trace the embedded molecular clouds provide astronomers with the size of the cloud in three dimensions.

Although not part of the work he is presenting, Zadeh said a good example of a dusty cloud that could be imaged with his technique is G2, the tiny cloud that is fast approaching Sgr A*, our galaxy's black hole.

The cloud now is too close to the black hole for Zadeh to take an image, but he is looking at earlier data to see if he can locate G2 as a radio dark cloud.

"If the cloud was farther away from the black hole than it is now, we could detect it," Zadeh said.

For his study, Zadeh used Green Bank Telescope maps and Very Large Array images from the National Radio Astronomy Observatory. The National Science Foundation (grant AST-0807400) supported the research.

The title of Zadeh's paper, which was published Nov. 1 by the Astrophysical Journal Letters, is "Imprints of Molecular Clouds in Radio Continuum Images."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>