Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting cryptosporidium in China

15.04.2015

A recently developed lab-on-a-chip device, which can diagnose the opportunistic parasite in as little as 10 minutes, may help improve treatment in remote, at-risk rural areas

For a healthy individual, an infection of Cryptosporidium parvum may mean nothing more than a few days of bad diarrhea. For someone with a compromised immune system, it can mean death, following an excruciating, protracted bout of watery diarrhea.


This is the microfluidic chip, with a diagram of its channels and antigen-labeling process.

Credit: Cheng/Fudan University

Recently, researchers at Fudan University's Institute of Biomedical Sciences in Shanghai developed a lab-on-a-chip device that can rapidly diagnose cryptosporidium infections from just a finger prick -- potentially bringing point-of-care diagnosis to at-risk areas in rural China in order to improve treatment outcomes.

Worldwide, treatment for the parasitic infection consists largely of oral rehydration and managing symptoms until the body clears the infection, something that may take far longer for people with HIV infections.

Currently, China has more than 780,000 people living with HIV/AIDS, but there is very little data on how many of them are living with Cryptosporidium infections.

This stems from the difficulties of diagnosing an infection in the field -- poor sensitivity and a short window of spore secretion both limit the viability of acid-fast staining, a standard diagnostic assay in use today. More advanced immunoassays, such as ELISA, are difficult to use broadly because they require relatively advanced lab settings and skilled technicians.

To address this need, Xunjia Cheng and Guodong Sui, both professors at Fudan University, sought to develop a device better suited for the field. Cheng's research has involved medical protozoa and opportunistic HIV infections, and Sui's lab focuses on microfluidics. This week in the journal Biomicrofluidics, from AIP Publishing, they describe how they developed and tested the new microfluidic device as the fruit of this collaboration.

The microfluidic chip was designed by AutoCad software and manufactured from a widely used silicon-based organic polymer known as PDMS. It consists of functional valves, pumps and columns, collectively sitting at the heart of a platform of reagent cartridges, an injection pump, a fluorescence microscope and a digital camera. The chip itself is small -- 3 cm by 2 cm -- and only costs about a dollar to manufacture, according to Sui.

The microfluidic device tests for the presence of the parasites' P23 antigen, a major molecular target of host antibody responses against the pathogen's infective stages.

The device is easy to use, allowing just about anybody to operate it, Sui and Cheng said. It can process up to five samples at a time, and the entire detection process can be completed in 10 minutes with only two microliters of blood -- less than the volume of a typical mustard seed.

Sui and Cheng tested their device's efficacy at diagnosing Cryptosporidium infections in 190 HIV-infected patients in Guangxi, China.

They found that the device's diagnostic capabilities were on par with those of ELISA - essentially giving you a device that's as effective as the current diagnostic standard, with huge potential reductions in cost, timeframe, size and the amount of training needed to operate.

Future work for Sui and Cheng involves expanding the chip's sample processing capacities to include other infectious diseases, as well as increasing the device's sensitivity and specificity.

###

The article, "Rapid microfluidic immunoassay for surveillance and diagnosis of Cryptosporidium infection in HIV-infected patients," is authored by Li Zhang, Yongfeng Fu, Wenwen Jing, Qing Xu, Wang Zhao, Meng Feng, Hiroshi Tachibana, Guodong Sui and Xunjia Cheng. It will appear in the journal Biomicrofluidics on April 14, 2015 (DOI: 10.1063/1.4916229). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/bmf/9/2/10.1063/1.4916229

The authors of this paper are affiliated with Fudan University and Tokai University School of Medicine.

ABOUT THE JOURNAL

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See http://bmf.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>