Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detecting cryptosporidium in China

15.04.2015

A recently developed lab-on-a-chip device, which can diagnose the opportunistic parasite in as little as 10 minutes, may help improve treatment in remote, at-risk rural areas

For a healthy individual, an infection of Cryptosporidium parvum may mean nothing more than a few days of bad diarrhea. For someone with a compromised immune system, it can mean death, following an excruciating, protracted bout of watery diarrhea.


This is the microfluidic chip, with a diagram of its channels and antigen-labeling process.

Credit: Cheng/Fudan University

Recently, researchers at Fudan University's Institute of Biomedical Sciences in Shanghai developed a lab-on-a-chip device that can rapidly diagnose cryptosporidium infections from just a finger prick -- potentially bringing point-of-care diagnosis to at-risk areas in rural China in order to improve treatment outcomes.

Worldwide, treatment for the parasitic infection consists largely of oral rehydration and managing symptoms until the body clears the infection, something that may take far longer for people with HIV infections.

Currently, China has more than 780,000 people living with HIV/AIDS, but there is very little data on how many of them are living with Cryptosporidium infections.

This stems from the difficulties of diagnosing an infection in the field -- poor sensitivity and a short window of spore secretion both limit the viability of acid-fast staining, a standard diagnostic assay in use today. More advanced immunoassays, such as ELISA, are difficult to use broadly because they require relatively advanced lab settings and skilled technicians.

To address this need, Xunjia Cheng and Guodong Sui, both professors at Fudan University, sought to develop a device better suited for the field. Cheng's research has involved medical protozoa and opportunistic HIV infections, and Sui's lab focuses on microfluidics. This week in the journal Biomicrofluidics, from AIP Publishing, they describe how they developed and tested the new microfluidic device as the fruit of this collaboration.

The microfluidic chip was designed by AutoCad software and manufactured from a widely used silicon-based organic polymer known as PDMS. It consists of functional valves, pumps and columns, collectively sitting at the heart of a platform of reagent cartridges, an injection pump, a fluorescence microscope and a digital camera. The chip itself is small -- 3 cm by 2 cm -- and only costs about a dollar to manufacture, according to Sui.

The microfluidic device tests for the presence of the parasites' P23 antigen, a major molecular target of host antibody responses against the pathogen's infective stages.

The device is easy to use, allowing just about anybody to operate it, Sui and Cheng said. It can process up to five samples at a time, and the entire detection process can be completed in 10 minutes with only two microliters of blood -- less than the volume of a typical mustard seed.

Sui and Cheng tested their device's efficacy at diagnosing Cryptosporidium infections in 190 HIV-infected patients in Guangxi, China.

They found that the device's diagnostic capabilities were on par with those of ELISA - essentially giving you a device that's as effective as the current diagnostic standard, with huge potential reductions in cost, timeframe, size and the amount of training needed to operate.

Future work for Sui and Cheng involves expanding the chip's sample processing capacities to include other infectious diseases, as well as increasing the device's sensitivity and specificity.

###

The article, "Rapid microfluidic immunoassay for surveillance and diagnosis of Cryptosporidium infection in HIV-infected patients," is authored by Li Zhang, Yongfeng Fu, Wenwen Jing, Qing Xu, Wang Zhao, Meng Feng, Hiroshi Tachibana, Guodong Sui and Xunjia Cheng. It will appear in the journal Biomicrofluidics on April 14, 2015 (DOI: 10.1063/1.4916229). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/bmf/9/2/10.1063/1.4916229

The authors of this paper are affiliated with Fudan University and Tokai University School of Medicine.

ABOUT THE JOURNAL

Biomicrofluidics publishes research highlighting fundamental physiochemical mechanisms associated with microfluidic and nanofluidic phenomena as well as novel microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. See http://bmf.aip.org

Media Contact

Jason Socrates Bardi
jbardi@aip.org
240-535-4954

 @jasonbardi

Jason Socrates Bardi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>