Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Demise of large satellite may have led to the formation of Saturn’s rings and inner moons

13.12.2010
Simulations performed at Southwest Research Institute may explain how Saturn's majestic rings and icy inner moons formed following the collision of a Titan-sized satellite with the planet, according to a paper published in Nature magazine's Dec. 12 Advance Online Publication.

Saturn's rings are at present 90 to 95 percent water ice. Because dust and debris from rocky meteoroids have polluted the rings, the rings are believed to have consisted of pure ice when they formed.

This composition is unusual compared to the approximately half-ice and half-rock mixture expected for materials in the outer Solar System. Similarly, the low densities of Saturn's inner moons show that they too are, as a group, unusually rich in ice.

The previous leading ring origin theory suggests the rings formed when a small satellite was disrupted by an impacting comet. "This scenario would have likely resulted in rings that were a mixture of rock and ice, rather than the ice-rich rings we see today," says the paper's author, Dr. Robin M. Canup, associate vice president of the SwRI Planetary Science Directorate in Boulder.

The new theory links the formation of the rings to the formation of Saturn's satellites. While Jupiter has four large satellites, Saturn has only one, Titan. Previous work suggests that multiple Titan-sized satellites originally formed at Saturn, but that those orbiting interior to Titan were lost as their orbits spiraled into the planet.

As the final lost satellite neared Saturn, heating caused by the flexing of its shape by the planet's gravity would cause its ice to melt and its rock to sink to its center. Canup uses numerical simulations to show that as such a satellite crosses the region of the current B ring, planetary tidal forces strip material from its outer icy layers, while its rocky core remains intact and eventually collides with the planet. This produces an initial ice ring that is much more massive than Saturn's current rings.

Over time, collisions in the ring cause it to spread radially and decrease in mass. Inwardly spreading ring material is lost, while material spreading past the ring's outer edge accumulates into icy moons with estimated masses consistent with the inner moons seen today.

"The new model proposes that the rings are primordial, formed from the same events that left Titan as Saturn's sole large satellite, " says Canup. "The implication is that the rings and the Saturnian moons interior to and including Tethys share a coupled origin, and are the last remnants of a lost companion satellite to Titan."

During its extended mission, the Cassini spacecraft will measure the rings' current mass and will indirectly measure the pollution rate of the rings. This should provide an improved estimate of the rings' age and a test of the new ring origin model.

NASA's Outer Planets Research Program funded this research. The paper, "Origin of Saturn's Rings and Inner Moons by Mass Removal from a Lost Titan-Sized Satellite," by Dr. R.M. Canup, was published in Nature magazine's Dec. 12 Advance Online Publication.

Maria Martinez | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>