Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delving into manganite conductivity

10.02.2011
Chemical compounds called manganites have been studied for many years since the discovery of colossal magnetoresistance, a property that promises important applications in the fields of magnetic sensors, magnetic random access memories and spintronic devices.

However, understanding—and ultimately controlling—this effect remains a challenge, because much about manganite physics is still not known. A research team lead by Maria Baldini from Stanford University and Carnegie Geophysical Laboratory scientists Viktor Struzhkin and Alexander Goncharov has made an important breakthrough in our understanding of the mysterious ways manganites respond when subjected to intense pressure.

At ambient conditions, manganites have insulating properties, meaning they do not conduct electric charges. When pressure of about 340,000 atmospheres is applied, these compounds change from an insulating state to a metallic state, which easily conducts charges. Scientists have long debated about the trigger for this change in conductivity.

The research team's new evidence, to be published online by Physical Review Letters on Friday, shows that for the manganite LaMnO3, this insulator-to-metal transition is strongly linked to a phenomenon called the Jahn-Teller effect. This effect actually causes a unique distortion of the compound's structure. The team's measurements were carried out at the Geophysical Laboratory.

Counter to expectations, the Jahn-Teller distortion is observed until LaMnO3 is in a non-conductive insulating state. Therefore, it is reasonable to believe that the switch from insulator to metal occurs when the distortion is suppressed, settling a longstanding debate about the nature of manganite insulating state. The formation of inhomogeneous domains—some with and some without distortion—was also observed. This evidence suggests that the manganite becomes metallic when the breakdown of undistorted to distorted molecules hits a critical threshold in favor of the undistorted.

"Separation into domains may be a ubiquitous phenomenon at high pressure and opens up the possibility of inducing colossal magnetoresistance by applying pressure" said Baldini, who was with Stanford at the time the research was conducted, but has now joined Carnegie as a research scientist.

Some of the researchers were supported by various grants from the Department of Energy, Office of Science and National Nuclear Security Administration. Some of the experiments were supported by DOE and Carnegie Canada.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Maria Baldini | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>