Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delving into manganite conductivity

10.02.2011
Chemical compounds called manganites have been studied for many years since the discovery of colossal magnetoresistance, a property that promises important applications in the fields of magnetic sensors, magnetic random access memories and spintronic devices.

However, understanding—and ultimately controlling—this effect remains a challenge, because much about manganite physics is still not known. A research team lead by Maria Baldini from Stanford University and Carnegie Geophysical Laboratory scientists Viktor Struzhkin and Alexander Goncharov has made an important breakthrough in our understanding of the mysterious ways manganites respond when subjected to intense pressure.

At ambient conditions, manganites have insulating properties, meaning they do not conduct electric charges. When pressure of about 340,000 atmospheres is applied, these compounds change from an insulating state to a metallic state, which easily conducts charges. Scientists have long debated about the trigger for this change in conductivity.

The research team's new evidence, to be published online by Physical Review Letters on Friday, shows that for the manganite LaMnO3, this insulator-to-metal transition is strongly linked to a phenomenon called the Jahn-Teller effect. This effect actually causes a unique distortion of the compound's structure. The team's measurements were carried out at the Geophysical Laboratory.

Counter to expectations, the Jahn-Teller distortion is observed until LaMnO3 is in a non-conductive insulating state. Therefore, it is reasonable to believe that the switch from insulator to metal occurs when the distortion is suppressed, settling a longstanding debate about the nature of manganite insulating state. The formation of inhomogeneous domains—some with and some without distortion—was also observed. This evidence suggests that the manganite becomes metallic when the breakdown of undistorted to distorted molecules hits a critical threshold in favor of the undistorted.

"Separation into domains may be a ubiquitous phenomenon at high pressure and opens up the possibility of inducing colossal magnetoresistance by applying pressure" said Baldini, who was with Stanford at the time the research was conducted, but has now joined Carnegie as a research scientist.

Some of the researchers were supported by various grants from the Department of Energy, Office of Science and National Nuclear Security Administration. Some of the experiments were supported by DOE and Carnegie Canada.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Maria Baldini | EurekAlert!
Further information:
http://carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>