Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Delayed time zero in photoemission

25.06.2010
New record in time measurement accuracy

When light is absorbed by atoms, the electrons become excited. If the light particles, so-called photons, carry sufficient energy, the electrons can be ejected from the atom. This effect is known as photoemission and was explained by Einstein more than hundred years ago.


The photoemission of electrons by an attosecond light pulse (blue beam) is time resolved by controlling the electron motion with an ultrashort visible laser pulse (shown as red beam). This attosecond streaking uncovers that electrons from different atomic orbitals are released with a delay comparable to the atomic unit of time. Credit: Photograph: Thorsten Naeser / Max-Planck-Institute of Quantum Optics

Until now, it has been assumed that the electron start moving out of the atom immediately after the impact of the photon. This point in time can be detected and has so far been considered as coincident with the arrival time of the light pulse, i.e. with "time zero" in the interaction of light with matter.

Using their ultra-short time measurement technology, physicists from the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics (MPQ), the Technische Universitaet Muenchen (TUM) and the Ludwig-Maximilians-Universitaet Munich (LMU) along with collaborators from Austria, Greece, and Saudi Arabia, have now tested this assumption.

... more about:
»Attosecond »Delayed »MPQ »Optic »Physic »Quantum »chemical process

The physicists fired pulses of near-infrared laser light lasting less than four femtoseconds (10-15 seconds) at atoms of the noble gas neon. The atoms were simultaneously hit by extreme ultraviolet pulses with a duration of 180 attoseconds, liberating electrons from their atomic orbitals. The attosecond flashes ejected electrons either from the outer 2p-orbitals or from the inner 2s-orbitals of the atom. With the controlled field of the synchronised laser pulse serving as an "attosecond chronograph", the physicists then recorded when the excited electrons left the atom.

Their measurements revealed that electrons from different atomic orbitals, although excited simultaneously, leave the atom with a small but measurable time delay of about twenty attoseconds. "One attosecond is one billionth of one billionth of a second, an unimaginable short interval of time. But after excitation by light one of the electrons leaves the atom earlier than the other. Hence we were able to show that electrons "hesitate" briefly before they leave an atom," explains Reinhard Kienberger, Professor for Experimental Physics (E 11) at the TUM and head of the Junior Research Group Attosecond Dynamics at the MPQ.

Determining the cause of this hesitation was also a challenge to the LAP theorists around Dr. Vladislav Yakovlev and his colleagues from the Vienna University of Technology (Austria) and the National Hellenic Research Foundation (Greece). Although they could confirm the effect qualitatively using complicated computations, they came up with a time offset of only five attoseconds. The cause of this discrepancy may lie in the complexity of the neon atom, which consists, in addition to the nucleus, of ten electrons. "The computational effort required to model such a many-electron system exceeds the computational capacity of today's supercomputers," explains Yakovlev.

Nevertheless, these investigations already point toward a probable cause of the "hesitation" of the electrons: the electrons interact not only with their atomic nucleus, but they are also influenced by one another. "This electron-electron interaction may then mean that it takes a short while before an electron that is shaken by the incident light wave is released by its fellow electrons and allowed to leave the atom," sais Dr. Martin Schulze, Postdoc at the LAP-Team.

"These to-date poorly understood interactions have a fundamental influence on electron movements in tiniest dimensions, which determine the course of all biological and chemical processes, not to mention the speed of microprocessors, which lie at the heart of computers", explains Ferenc Krausz. "Our investigations shed light on the electrons' interactions with one another on atomic scale". To this end, the fastest measuring technique in the world is just about good enough: the observed 20-attosecond time offset in the ejection times of electrons is the shortest time interval that has ever been directly measured.

The research has been supported by the Deutsche Forschungsgemeinschaft (Cluster of Excellence Munich-Centre of Advanced Phtonics), the Max-Planck-Society and the King Saud University-Max-Planck-Institute of Quantum Optics collaboration. Further support came from NSF, Austrian Science Fund, European Commission (Marie-Curie Reintegration Grant, ERC Starting Grant) and the Alexander von Humboldt Foundation (Sofia Kovalevskaya Award).

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de

Further reports about: Attosecond Delayed MPQ Optic Physic Quantum chemical process

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>