Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Definition Could Further Limit Habitable Zones Around Distant Suns

12.06.2009
New calculations indicate that, in nearby star systems, tidal forces exerted on planets by their parent star's gravity could limit what is regarded as a star's habitable zone and change the criteria for planets where life could potentially take root.

As astronomers gaze toward nearby planetary systems in search of life, they are focusing their attention on each system's habitable zone, where heat radiated from the star is just right to keep a planet's water in liquid form.

A number of planets have been discovered orbiting red dwarf stars, which make up about three-quarters of the stars close to our solar system. Potentially habitable planets must orbit close to those stars – perhaps one-fiftieth the distance of Earth to the sun – since those stars are smaller and generate less heat than our sun.

But new calculations indicate that, with planets so close, tidal forces exerted on planets by the parent star's gravity could limit what is regarded as a star's habitable zone and change the criteria for planets where life could potentially take root.

Scientists believe liquid water is essential for life. But a planet also must have plate tectonics to pull excess carbon from its atmosphere and confine it in rocks to prevent runaway greenhouse warming. Tectonics, or the movement of the plates that make up a planet's surface, typically is driven by radioactive decay in the planet's core, but a star's gravity can cause tides in the planet, which creates more energy to drive plate tectonics.

"If you have plate tectonics, then you can have long-term climate stability, which we think is a prerequisite for life," said Rory Barnes, a University of Washington postdoctoral researcher in astronomy.

However, tectonic forces cannot be so severe that geologic events quickly repave a planet's surface and destroy life that might have gotten a foothold, he said. The planet must be at a distance where tugging from the star's gravitational field generates tectonics without setting off extreme volcanic activity that resurfaces the planet in too short a time for life to prosper.

Barnes is lead author of a paper to be published by The Astrophysical Journal Letters that uses new calculations from computer modeling to define a "tidal habitable zone." Co-authors are Brian Jackson and Richard Greenberg from the University of Arizona and Sean Raymond from the University of Colorado. The research was funded by NASA.

"Overall, the effect of this work is to reduce the number of habitable environments in the universe, or at least what we have thought of as habitable environments," Barnes said. "The best places to look for habitability are where this new definition and the old definition overlap."

The new calculations have implications for planets previously considered too small for habitability. An example is Mars, which used to experience tectonics but that activity ceased as heat from the planet's decaying inner core dissipated.

But as planets get closer to their suns, the gravitational pull gets stronger, tidal forces increase and more energy is released. If Mars were to move closer to the sun, the sun's tidal tugs could possibly restart the tectonics, releasing gases from the core to provide more atmosphere. If Mars harbors liquid water, at that point it could be habitable for life as we know it.

Various moons of Jupiter have long been considered as potentially harboring life. But one of them, Io, has so much volcanic activity, the result of tidal forces from Jupiter, that it is not regarded as a good candidate. Tectonic activity remakes Io's surface in less than 1 million years.

"If that were to happen on Earth, it would be hard to imagine how life would develop," Barnes said.

A potential Earth-like planet, but eight times more massive, called Gliese 581d was discovered in 2007 about 20 light years away in the constellation Libra. At first it was thought the planet was too far from its sun, Gliese 581, to have liquid water, but recent observations have determined the orbit is within the habitable zone for liquid water. However, the planet is outside the habitable zone for its sun's tidal forces, which the authors believe drastically limits the possibility of life.

"Our model predicts that tides may contribute only one-quarter of the heating required to make the planet habitable, so a lot of heat from decay of radioactive isotopes may be required to make up the difference," Jackson said.

Barnes added, "The bottom line is that tidal forcing is an important factor that we are going to have to consider when looking for habitable planets."

For more information, contact Barnes at 206-543-8979 or rory@astro.washington.edu

Vince Stricherz | Newswise Science News
Further information:
http://www.washington.edu
http://www.astro.washington.edu/users/rory/publications/bjgr09.pdf

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>