Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep Impact and Other Spacecraft Find Clear Evidence of Water on Moon

28.09.2009
New data from the Deep Impact spacecraft and the Moon Mineralogy Mapper (M3), an instrument aboard India's recently ended Chandrayaan-1 spacecraft, provide, for the first time, clear evidence that water exists on the surface of the Moon.

"The Deep Impact observations of the Moon not only unequivocally confirm the presence of OH/H2O on the lunar surface, but also reveal that the entire lunar surface is hydrated during at least some portions of the lunar day," write University of Maryland astronomer Jessica Sunshine and co-authors in a paper on the Deep Impact data published online in the September 24 issue of the journal Science.

Small Amount of Water Yields Big Excitement "Finding water on the Moon in daylight is a huge surprise, even if it is only a small amount of water and only in the form of molecules stuck to soil," said Sunshine, lead author of the Deep Impact paper and a co-author of a companion Science paper based on data from the M3 instrument that first detected the presence of lunar water. Prevailing scientific opinion long has been that there probably is no water on the Moon and that, even if it does exist, it would be only in permanently cold, shadowed craters at the lunar poles.

"In the Deep Impact data we're essentially watching water molecules form and then dissipate right in front of our eyes," said Sunshine, who said her first reaction to the M3 data was skepticism.

"We aren't certain yet how this happens," she said, "but our findings suggest a solar driven cycle in which layers of water only a few molecules thick form, dissipate and reform on the surface each lunar day. We postulate that hydrogen ions from the sun are carried by the solar wind to the Moon and there interact with oxygen rich minerals in lunar soil to produce the water [H20] and hydroxyl [OH] molecules that spectral analysis unequivocally show us is there. In a cycle that occurs entirely in daylight, this water is formed in the morning, substantially lost by lunar mid-day, and re-formed as the lunar surface cools towards evening.

"If this is correct, then such hydration via solar wind would be expected to occur throughout the inner Solar System on all airless bodies with oxygen-bearing minerals on their surfaces," Sunshine said.

"Within the context of lunar science, this is a major discovery," Paul G. Lucey, a planetary scientist with the University of Hawaii, said in a Los Angeles Times article. "There was zero accepted evidence that there was any water at the lunar surface, [but] now it is shown to be easily detectable, though by extremely sensitive methods. As a lunar scientist, when I read about this I was completely blown away," said Lucey, who was not involved in the current research.

"Water ice on the moon has been something of a holy grail for lunar scientists for a very long time," Jim Green, director of the Planetary Science Division at NASA Headquarters in Washington said in a NASA release.

Another reflection of the scientific significance of finding water on the moon was simply that it generated three papers in the current issue of Science and a NASA press conference. In addition to the M3 and Deep Impact articles, a third Science paper presented evidence collected by NASA's Cassini spacecraft.

Lunar H20 Latest in UM-Led Deep Impact Science Although the M3 instrument and its science team made the initial discovery of water in certain areas of the lunar surface, Sunshine and co-authors on the Deep Impact paper said the conclusiveness of the finding of water, the realization it was a surface-wide phenomenon, and the insight into the temperature dependent nature of the process were only possible because of data collected by the Deep Impact spacecraft during its current extended mission (EPOXI). Deep Impact was not designed to study the Moon, but for a famous 2005 mission in which it successfully knocked a hole in comet Tempel 1 to find out what was inside. Its data on lunar water were obtained as part of calibration opportunities that occurred during June 2009 and December 2007 flybys of the Earth and Moon needed to get adequate gravity boosts to travel on its EPOXI mission to a second comet, Hartley 2, which the spacecraft will encounter in November 2010.

"Without the spectral range of Deep Impact's instruments the M3 discovery of surface water would not have been nearly so definitive, and because the Deep Impact spacecraft took observations at different times of the lunar day, the effect of temperature became very apparent," Sunshine explained.

University of Maryland Astronomer Michael A'Hearn, Deep Impact and EPOXI science team leader and one of Sunshine's four Maryland co-authors on the Deep Impact paper in Science, said "I think it is tremendous that the Deep Impact spacecraft, which was the first to detect ice on a cometary nucleus, has now demonstrated the existence of adsorbed water on the Moon.

"This great spacecraft and its instruments continue to make important, unexpected discoveries long after the prime mission has ended," he said.

Lee Tune | Newswise Science News
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>