Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In Deep Galaxy Surveys, Astronomers Get a Boost from Gravity

14.01.2011
Astronomers who survey galaxies in the distant universe are getting some unexpected help from gravity, according to a new study.

In a presentation at the American Astronomical Society meeting this week and a related paper in the current issue of the journal Nature, researchers say that as many as 20 percent of the most distant galaxies currently detected appear brighter than they actually are, because of an effect called "strong gravitational lensing."

The discovery could change astronomers' notions of how galaxies formed in the early universe. It will also be important in the planning for how to effectively use NASA's planned James Webb Space Telescope (JWST) for hunting very distant galaxies.

Principal investigator Stuart Wyithe of the University of Melbourne calculated the lensing effect at various distances. Wyithe and Haojing Yan, postdoctoral fellow at the Center for Cosmology and Astro-Particle Physics at Ohio State University, collaborated with Rogier Windhorst at Arizona State University and Shude Mao of the University of Manchester and the Chinese Academy of Sciences.

Yan reports that astronomers have long known about strong gravitational lensing, but thought it only happens rarely, and wouldn't have any real impact on galaxy surveys.

"On one hand, lensing is good for us in that it enables us to detect galaxies that would otherwise be invisible, but on the other hand we will need to correct our surveys to obtain accurate tallies," Yan says.

From our view on Earth, if a faraway galaxy and a nearby galaxy line up on the sky, the gravity of the nearby galaxy bends the light from the faraway galaxy, as if the nearer galaxy were a magnifying glass, or lens.

Einstein predicted decades ago that gravity could bend light, and astronomers have since proven him right. In fact, modern astronomers exploit the effect to find distant objects that would otherwise be invisible, such as planets orbiting other stars.

And in this case, a statistical analysis revealed that gravitational lensing is brightening faraway galaxies that would otherwise be too faint to see.

Now that astronomers are aware of the effect, they can use it to their advantage.

"We just need to be aware that we are looking through 'lenses,'" Yan said. "Take a real magnifying glass as an example: through the lens we can see more details of an object - which is a good thing - but you should be aware that all those details are not actually the sizes that you see, because you're looking through a magnifying lens. The same is true when we're looking at galaxies."

"We predict that many galaxies in the most remote universe will only ever be visible to us because they are magnified in this way," he adds.

Clues From Hubble

Yan is part of an international team of astronomers who are using NASA's Hubble Space Telescope to probe the distant universe. They analyze images from the Hubble Ultra Deep Field (HUDF) survey, a collection of the furthest images of the universe ever taken.

The survey looks back in time 13 billion years, to when the universe was less than one billion years old. Astronomers want to know how many galaxies were

bright or faint when the universe was still in that infant stage. So any magnification of those galaxies will interfere with astronomers' ability to judge.

Even through the eyes of Hubble, these faraway galaxies look very small, so it's hard to tell which ones have been magnified. Yet tallies from the HUDF survey are critical to scientists' understanding of how galaxies formed and evolved.

"Although we do not yet have an instrument to directly detect a lensing 'signature' to unambiguously support our prediction, we now have some indirect, tentative evidence that the number of lensed galaxies could be high as we look into the early universe," Yan says. "The apparent association of very distant galaxies to galaxies in the foreground is the key."

Sometimes, the gravitational lensing distorts a galaxy's appearance, or alters its brightness. Other times, the lens splits the light from the faraway galaxy so that two or more galaxies will form around the lens, when there is really only one.

In fact, Yan and his colleagues began this work in order to understand why so many of the faraway galaxies they observed in HUDF survey images appear to be located near the line of sight to galaxies in the foreground.

Through a statistical analysis, they determined that strong gravitational lensing is the most likely explanation.

Yan stressed that the 20-percent estimate is an initial one, and could change in the future.

"We want to make it clear that the size of the effect depends on a number of uncertain factors. If, for example, very distant galaxies are much fainter than their nearby counterparts but much more numerous, the majority of such distant galaxies that we will detect in the foreseeable future could be lensed ones," he says.

According to Yan and his colleagues, the impact of gravitational lensing on galaxy surveys will be even higher in future studies.

Exactly how much is an open question, and Yan says that only the James Webb Space Telescope, set for launch later this decade, could provide a decisive answer.

Yan's discovery suggests that when astronomers use JWST to hunt for faraway galaxies, they should search close to foreground galaxies.

"At Hubble's resolution one literally can no longer see the whole 'forest for the trees' at these extreme distances. Only the James Webb Space Telescope will have the exquisite resolution and sensitivity to disentangle these very distant objects from the foreground lensing galaxies,'' adds Windhorst.

"This also means that JWST needs to have a very good resolution, so that the galaxies won't just blend together," says Mao.

Funding for this work came from the Australian Research Council, the Space Telescope Science Institute, a NASA-JWST Interdisciplinary Scientist grant, and Yan's fellowship at the Center for Cosmology and Astro-Particle Physics at Ohio State.

A graphic created by the Space Telescope Science Institute is available to members of the news media; contact Pam Frost Gorder. The graphic is also available at:

http://hubblesite.org/news/2011/04
http://www.nasa.gov/aas
http://www.asu.edu/clas/hst/www/jwst/HUDFjavatool/index.html
http://researchnews.osu.edu/archive/deeplens.htm
http://www.asu.edu/clas/hst/www/nature11/
The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Ray Villard | Newswise Science News
Further information:
http://www.stsci.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>