Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deceptive-Looking Vortex Line in Superfluid Led to Twice-Mistaken Identity

30.09.2014

Mysterious effect found in superfluids were pedestrian whirlpool-like structures, not exotic solitons.

So long, solitons: University of Chicago physicists have shown that a group of scientists were incorrect when they concluded that a mysterious effect found in superfluids indicated the presence of solitons—exotic, solitary waves. Instead, they explain, the result was due to more pedestrian, whirlpool-like structures in the fluid. They published their explanation in the Sept. 19 issue of Physical Review Letters.


Peter Scherpelz

Researchers produced this image in a computer simulation of an unexpected phenomenon found in an experiment involving ultracold superfluids. This image shows a three-dimensional view of a vortex line (red) as it forms from a decaying vortex ring in a superfluid.

The debate began in July 2013, when a group of scientists from the Massachusetts Institute of Technology published results in Nature showing a long-lived structure in a superfluid — a liquid cooled until it flows without friction.

The researchers created the structure in a superfluid made of ultra-cold lithium atoms, by hitting half of the fluid with a laser, so that the lithium particles would be in different quantum-mechanical configurations in the two halves.

When they imaged the result, the researchers observed a dark line cutting across the cigar-shaped volume of superfluid, indicating a region where the density of particles in the fluid was lower. This, they concluded, was a soliton, which behaves like a sparsely populated wall between two halves of the fluid, separating the particles found in the two different states. This wall persisted for a long time, and oscillated back and forth across the fluid.

The appearance of the soliton wall was a surprising conclusion, because it didn’t fit in with the accepted theories about the behavior of such systems.

“If it were a wall, that would mean that there’s some very unusual physics that theorists did not know about going on, so it of course attracted a huge amount of attention,” said Peter Scherpelz, a postdoctoral scientist in physics and lead author of the paper.

Ensuing saga

A scientific saga ensued, in which multiple groups from different institutions attempted to understand the result. But the UChicago group—led by Kathryn Levin, professor in physics—was the first to present the correct explanation.

Levin’s group tried to reproduce the puzzling result with a computer simulation of a superfluid. The group had developed the simulation thanks to a collaboration with Argonne National Laboratory. Meanwhile, other groups tried their hands at simulations as well. Some concluded that the region of lower density in the fluid was the result not of a soliton but of a vortex ring — a swirling, donut-shaped structure, around which particles circulate. A smoke ring is a well-known example of a vortex ring.

But Levin’s group couldn’t reproduce these results in their simulation. Instead, they found that a vortex ring was briefly established, but quickly decayed to a simple vortex line, akin to a tornado or whirlpool stretching across the fluid.

Shortly after Levin’s group posted their results on the preprint server arXiv, the MIT researchers released their new results in a preprint, explaining that what they had seen were simple vortices—validating the UChicago theory.

“We swam upstream in a way,” said Levin. “Not too often theory anticipates experiment, and not too often theory’s bold enough to say, ‘Wait a minute. We don’t agree with what the going story is. We think it had to be something else.’”

Symmetry problems

The problems with the earlier simulations came down to symmetry. Much like a cigar looks the same if you rotate it around its long axis, other teams had assumed in their simulations that the behavior in the fluid was symmetric—an approximation that made it easier for structures like rings to persist, but which didn’t account for imperfections that are inevitable in real-world experiments.

The original MIT experiment had also assumed an incorrect symmetry to come to their original conclusion. They measured only a two-dimensional projection of their experiment, meaning that they couldn’t distinguish between the three possible structures, because a ring or a wall viewed from the side looks just like a line. The MIT group had incorrectly assumed that the feature was symmetric, and that it sliced all the way through the cigar to form a soliton wall.

Physicists are intrigued by the physics of superfluids in part because they are related to superconductors, which have a multitude of technological applications due to their ability to conduct electricity without any resistance. Superfluids, however, often are an easier system to study. The materials are so similar that the simulation code used by the group was originally developed for superconductors, and modified for superfluids.

Another reason physicists want to understand this system is to study physics out of equilibrium, in which the material hasn’t reached a balanced, comfortable state. After the superfluid is hit with the laser, half of the atoms are in a different state than the other half, and they want to return to the same state. Vortices form as the superfluid moves toward equilibrium.

“Everything we know about physics is sort of confined to equilibrium and we’re trying really hard to test ourselves and learn what goes on out of equilibrium, because that’s a lot of the real world,” Levin said. —Emily Conover

Funding: National Science Foundation, U.S. Department of Energy, and the Hertz Foundation.

Citation: “Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects,” by Peter Scherpelz, Karmela Padavić, Adam Rançon, Andreas Glatz, Igor S. Aranson, and K. Levin, Physical Review Letters, Vol. 113, Issue 12, Sept. 19, 2014. DOI: 10.1103/PhysRevLett.113.125301.

Contact Information

Steve Koppes
Associate News Director
skoppes@uchicago.edu
Phone: 773-702-8366

Steve Koppes | newswise

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>