Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Deceptive-Looking Vortex Line in Superfluid Led to Twice-Mistaken Identity


Mysterious effect found in superfluids were pedestrian whirlpool-like structures, not exotic solitons.

So long, solitons: University of Chicago physicists have shown that a group of scientists were incorrect when they concluded that a mysterious effect found in superfluids indicated the presence of solitons—exotic, solitary waves. Instead, they explain, the result was due to more pedestrian, whirlpool-like structures in the fluid. They published their explanation in the Sept. 19 issue of Physical Review Letters.

Peter Scherpelz

Researchers produced this image in a computer simulation of an unexpected phenomenon found in an experiment involving ultracold superfluids. This image shows a three-dimensional view of a vortex line (red) as it forms from a decaying vortex ring in a superfluid.

The debate began in July 2013, when a group of scientists from the Massachusetts Institute of Technology published results in Nature showing a long-lived structure in a superfluid — a liquid cooled until it flows without friction.

The researchers created the structure in a superfluid made of ultra-cold lithium atoms, by hitting half of the fluid with a laser, so that the lithium particles would be in different quantum-mechanical configurations in the two halves.

When they imaged the result, the researchers observed a dark line cutting across the cigar-shaped volume of superfluid, indicating a region where the density of particles in the fluid was lower. This, they concluded, was a soliton, which behaves like a sparsely populated wall between two halves of the fluid, separating the particles found in the two different states. This wall persisted for a long time, and oscillated back and forth across the fluid.

The appearance of the soliton wall was a surprising conclusion, because it didn’t fit in with the accepted theories about the behavior of such systems.

“If it were a wall, that would mean that there’s some very unusual physics that theorists did not know about going on, so it of course attracted a huge amount of attention,” said Peter Scherpelz, a postdoctoral scientist in physics and lead author of the paper.

Ensuing saga

A scientific saga ensued, in which multiple groups from different institutions attempted to understand the result. But the UChicago group—led by Kathryn Levin, professor in physics—was the first to present the correct explanation.

Levin’s group tried to reproduce the puzzling result with a computer simulation of a superfluid. The group had developed the simulation thanks to a collaboration with Argonne National Laboratory. Meanwhile, other groups tried their hands at simulations as well. Some concluded that the region of lower density in the fluid was the result not of a soliton but of a vortex ring — a swirling, donut-shaped structure, around which particles circulate. A smoke ring is a well-known example of a vortex ring.

But Levin’s group couldn’t reproduce these results in their simulation. Instead, they found that a vortex ring was briefly established, but quickly decayed to a simple vortex line, akin to a tornado or whirlpool stretching across the fluid.

Shortly after Levin’s group posted their results on the preprint server arXiv, the MIT researchers released their new results in a preprint, explaining that what they had seen were simple vortices—validating the UChicago theory.

“We swam upstream in a way,” said Levin. “Not too often theory anticipates experiment, and not too often theory’s bold enough to say, ‘Wait a minute. We don’t agree with what the going story is. We think it had to be something else.’”

Symmetry problems

The problems with the earlier simulations came down to symmetry. Much like a cigar looks the same if you rotate it around its long axis, other teams had assumed in their simulations that the behavior in the fluid was symmetric—an approximation that made it easier for structures like rings to persist, but which didn’t account for imperfections that are inevitable in real-world experiments.

The original MIT experiment had also assumed an incorrect symmetry to come to their original conclusion. They measured only a two-dimensional projection of their experiment, meaning that they couldn’t distinguish between the three possible structures, because a ring or a wall viewed from the side looks just like a line. The MIT group had incorrectly assumed that the feature was symmetric, and that it sliced all the way through the cigar to form a soliton wall.

Physicists are intrigued by the physics of superfluids in part because they are related to superconductors, which have a multitude of technological applications due to their ability to conduct electricity without any resistance. Superfluids, however, often are an easier system to study. The materials are so similar that the simulation code used by the group was originally developed for superconductors, and modified for superfluids.

Another reason physicists want to understand this system is to study physics out of equilibrium, in which the material hasn’t reached a balanced, comfortable state. After the superfluid is hit with the laser, half of the atoms are in a different state than the other half, and they want to return to the same state. Vortices form as the superfluid moves toward equilibrium.

“Everything we know about physics is sort of confined to equilibrium and we’re trying really hard to test ourselves and learn what goes on out of equilibrium, because that’s a lot of the real world,” Levin said. —Emily Conover

Funding: National Science Foundation, U.S. Department of Energy, and the Hertz Foundation.

Citation: “Phase Imprinting in Equilibrating Fermi Gases: The Transience of Vortex Rings and Other Defects,” by Peter Scherpelz, Karmela Padavić, Adam Rançon, Andreas Glatz, Igor S. Aranson, and K. Levin, Physical Review Letters, Vol. 113, Issue 12, Sept. 19, 2014. DOI: 10.1103/PhysRevLett.113.125301.

Contact Information

Steve Koppes
Associate News Director
Phone: 773-702-8366

Steve Koppes | newswise

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>



Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

More VideoLinks >>>