Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decay used to construct quantum information

Usually, when researchers work with quantum information, they do everything they can to prevent the information from decaying.

Now researchers at the Niels Bohr Institute, among others, have flipped things around and are exploiting the decay to create the so-called entanglement of atomic systems, which is the foundation for quantum information processing. The results are published in the scientific journal, Nature.

This is an artist's impression of the experiment. Four ions are trapped on a line. The outer Magnesium ions (green) cools the system by emitting light. Lasers are used to prepare the inner Beryllium ions (red) in an entangled state where one can not understand the state of the particles individually but have to consider the two ions as a whole. As opposed to previous experiments also the latter process happens by the emission of light.

Credit: (Credit NIST)

"When working with quantum information, you would normally seek to isolate the system from the environment in order to not get a disturbing interaction that can destroy the fragile quantum state. But this is very difficult to avoid completely. So we thought that you could perhaps take the opposite approach and instead of seeing decay as the enemy, look at it as a friend and take advantage of it," explains Anders Søndberg Sørensen, a professor of quantum optics at the Niels Bohr Institute at the University of Copenhagen.

Electrons leaping hither and thither

The problem is that the quantum system is affected by the environment and exchanges energy with it. The electrons in the atoms jump from one energy state to another and researchers consider this kind of jump to be decay, because the information stored in the electrons disappears into its surroundings.

"But with our method we let the quantum system 'talk' with its surroundings and create a control of the electrons' jumps so that they are precisely in the state we want them to be in, and in that way we make use of the interaction with the environment," explains PhD student Florentin Reiter, who developed the theoretical model for the method together with Anders Sørensen.

The research is a collaboration with the experimental research group lead by David Wineland (recipient of the Nobel Prize in physics last year) at the National Institute for Standards and Technology in Boulder Colorado, USA.

Kicking the electrons into place

The method is based on a chain of ions comprised of magnesium and beryllium. They are cooled down to near absolute zero at minus 273 degrees C. The magnesium atoms are just there as a kind of cooling element in the chain of ions, while the beryllium atoms are the active elements. Entanglement is created between the electrons of the beryllium ions using carefully controlled laser light.

"The trick lies in the combination of laser light," explains Florentin Reiter and continues "the electrons can be in four energy states and if they jump around and land in a 'wrong' state, they are simply 'kicked' by the laser and we continue until they are where they are supposed to be. In that way there is perfect entanglement. Unlike in the past, when you had to use carefully designed laser pulses to create entanglement, researchers can now just turn on the laser and grab a cup of coffee and when they come back the electrons are in the correct state."

Up until this point, the decay of quantum information has been the biggest obstacle to making a quantum computer. The new experiment is the first time the problem has been turned on its head and the decay has been used constructively in a quantum computer. The researchers hope that this might be a way to overcome some of the problems that have previously made it difficult to make quantum computers. The researchers are now working to make more advanced quantum information processors based on the same ideas. In particular, they hope that similar techniques can be used to correct errors in a quantum computer.

For more information contact:

Anders Søndberg Sørensen
Professor, Quantum Optics
Niels Bohr Institute
University of Copenhagen
+45 3532-5240
+45 2466-1377
Florentin Reiter
PhD student
Quantum Optics
Niels Bohr Institute
University of Copenhagen

Gertie Skaarup | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>