Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dead galaxies in Coma Cluster may be packed with dark matter

20.07.2015

Galaxies in a cluster roughly 300 million light years from Earth could contain as much as 100 times more dark matter than visible matter, according to an Australian study.

The research, published today, used powerful computer simulations to study galaxies that have fallen into the Coma Cluster, one of the largest structures in the Universe in which thousands of galaxies are bound together by gravity.


This artist's impression of the 'quenching' process shows how a normal blue (star-forming) galaxy lost its gas while falling into the Coma Cluster very early on in its formation.

Credit: Cameron Yozin, ICRAR/UWA

"It found the galaxies could have fallen into the cluster as early as seven billion years ago, which, if our current theories of galaxies evolution are correct, suggests they must have lots of dark matter protecting the visible matter from being ripped apart by the cluster."

Dark matter cannot be seen directly but the mysterious substance is thought to make up about 84 per cent of the matter in the Universe.

International Centre for Radio Astronomy Research PhD student Cameron Yozin, who led the study, says the paper demonstrates for the first time that some galaxies that have fallen into the cluster could plausibly have as much as 100 times more dark matter than visible matter.

Yozin, who is based at The University of Western Australia, says the galaxies he studied in the Coma Cluster are about the same size as our own Milky Way but contain only one per cent of the stars.

He says the galaxies appear to have stopped making new stars when they first fell into the cluster between seven and ten billion years ago and have been dead ever since, leading astrophysicists to label them "failed" galaxies.

This end to star formation is known as "quenching".

"Galaxies originally form when large clouds of hydrogen gas collapse and are converted to stars--if you remove that gas, the galaxy cannot grow further," Yozin says.

"Falling into a cluster is one way in which this can happen. The immense gravitational force of the cluster pulls in the galaxy, but its gas is pushed out and essentially stolen by hot gas in the cluster itself.

"For the first time, my simulations have demonstrated that these galaxies could have been quenched by the cluster as early as seven billion years ago.

"They have however avoided being ripped apart completely in this environment because they fell in with enough dark matter to protect their visible matter."

This research was motivated by the recent observational discovery of these galaxies by an American and Canadian team led Professor Pieter van Dokkum of Yale University.

Using the data the North American team published last year, Yozin was able to create computer simulations to model how the galaxies evolved into what we can see today.

###

The study was released in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

Further Information:

ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Original publication details:

'The quenching and survival of ultra-diffuse galaxies in the Coma cluster' in Monthly Notices of the Royal Astronomical Society. Published online on 20/7/2015 at: http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stv1073

Supporting Multimedia:

High resolution images are available from the following link. http://www.icrar.org/comacluster

Contact Details:

Cameron Yozin (ICRAR - UWA)
Ph: +61 8 6488 3819 E: cameron.yozin-smith@icrar.org M: +61 423 941 128

Pete Wheeler (Media Contact, ICRAR)
Ph: +61 8 6488 7758 E: pete.wheeler@icrar.org M: +61 423 982 018

UWA Media Office
Ph: +61 8 6488 3229 E: uwamedia@uwa.edu.au

http://www.icrar.org/ 

Peter Wheeler | EurekAlert!

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>