Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deactivating Radioactive Waste

22.09.2008
In order to decrease the isolation time for radioactive waste, first of all, the actinides - elements whose nuclei are heavier than uranium (i.e. curium, actinium) - must be removed from the waste by processing (transmutation) into short-lived nuclei.

“The core concept of transmutation – which was formulated as early as mid 20th century – consists of irradiating the actinides by fast neutrons. The highly stimulated nuclei that are generated this way suffer a fission, which leads to relatively short-lived nuclei, which in turn rapidly disintegrate into stable isotopes. Then, they cease to be radioactive,” explains Professor Helmut Leeb from the Atomic Institute of the Austrian Universities.

Thus, the required radioactive waste isolation time of several millions years could be decreased to 300 and up to 500 years. The technological progress made in the last decades has made the transmutation possible at the industrial level.

An efficient transmutation of radioactive waste requires the development of new facilities. In addition to specially designed fast reactors, the Accelerator-Driven Systems (ADS) present a new potential concept. This is an undercritical reactor, which cannot sustain any chain reaction. The neutrons necessary for stationary operations are supplied by a proton accelerator with a spallation target located in the reactor core. “During the spallation, the atomic nuclei of the target (mainly lead) are broken with high-energy protons, while a large number of neutrons are normally released, neutrons which are necessary for the stationary operation of the reactor. If the accelerator is turned off, the chain reaction ceases,” added Leeb. Worldwide studies are based on the assumption that at least two decades will be necessary to transfer this concept to the industrial level, a concept which is fully understood at the scientific level.

An essential prerequisite for this development is a thorough knowledge of the neutrons’ interaction and reactions with other materials as available to date. Therefore, in the year 2000, the n_Tof facility became operative at CERN (Genf), which is a unique facility in the world, suitable especially for measuring the reactions of radioactive materials when bombarded with neutrons. Between 2002 and 2005, a large number of radiative captures and fission reactions, previously insufficiently known, were measured as part of an EU project, in which nuclear physicists from TU Vienna were considerably involved. After the conditional pause occasioned by the construction of the Large Hadron Collider at CERN, now at the end of September 2008, the consortium will start the operations at the upgraded n_TOF facility with a new target. The first series of experiments are neutron radiative captures on iron and nickel, which are analyzed by Viennese nuclear physicists (from TU Vienna and the University of Vienna). In addition to accurate reaction data for transmutation facilities, the results are also of interest for Astrophysics.

An alternative nuclear fuel, which leads to a reduced incidence of radioactive waste, is the “thorium-uranium cycle.” Leeb: “Thorium is a potential nuclear fuel, which may be incubated into a light uranium isotope, whose fission generates basically no actinide. Furthermore, thorium can be found approximately five times more often than uranium. However, special reactors must be still developed for this, reactors that would be appropriate for the reaction pattern and for the somewhat harder gamma radiation. India is one of the countries that already host experiments with thorium in reactor cores.

Daniela Hallegger | alfa
Further information:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/index.php?id=7983

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>