Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Measuring the downside of downsizing

01.08.2013
Sensitive measurements of lubricant transfer in hard disk drives will aid the design of more stable and compact components

To keep pace with the rapidly growing consumer demand for data storage, hardware engineers are striving to cram as much electronic information into as small a space as possible. Jinmin Zhao, Mingsheng Zhang and co©workers at the A*STAR Data Storage Institute, Singapore, have now devised a technique to assess the impact of making these devices more compact1. Insights resulting from this work will guide the future design of stable disk drives.

The primary components of a hard disk drive are a rotating disk coated with a thin film of magnetic material and a magnetic head on a moving arm, also called a slider (see image). The slider includes magnetic write/read elements that can encode a single bit of binary information by altering the properties of the thin film at a small spot on the surface. A smaller spot enables a higher density of data storage.

Current technology is rapidly approaching one trillion bits per square inch, but this requires the separation between the head and disk to be less than 2 nanometers. This narrow requirement, however, creates its own problems. Lubricant used on the surface of the disk to protect it from corrosion can attach to the slider, which adversely affects the reliability of the hard disk drive. ¡°We have carried out a systematic and quantitative study on how the variation of slider optical properties affects the accuracy of the measured lubricant thickness on the slider surface,¡± says Zhang.

Zhao, Zhang and their co-workers analyzed a lubricant-coated slider using a technique known as spectroscopic ellipsometry. Measuring the intensity of light reflected from a sample slider provided a highly accurate estimate of the thickness of the lubricant film. Ellipsometry is a fast and non-destructive technique that, unlike some of the alternative approaches, does not require ultra-high vacuum conditions. This technique, however, does require accurate knowledge of the optical properties of the slider. A typical slider is made of aluminum oxide and grains of titanium carbide of many different shapes and sizes; thus, its optical properties vary from position to position.

Zhao and the team¡¯s study demonstrated that the uncertainty in lubricant thickness is approximately proportional to the uncertainty in the slider¡¯s optical constants, and it becomes particularly pronounced for thicknesses below 2 nanometers.

¡°This lubricant transfer will be more serious in future heat-assisted magnetic recording,¡± explains Zhang. ¡°The next step in this research will focus on how to reduce the lubricant transfer, especially in this type of device.¡±

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

References

Zhao, J. M., Zhang, M. S., Yang, M. C. & Ji, R. Ellipsometric measurement accuracy of ultrathin lubricant thickness on magnetic head slider. Microsystem Technologies 18, 1283¨C1288 (2012). | article

Associated links
http://www.research.a-star.edu.sg/research/6711

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/research/6711
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>