Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: How magnetic recording heats up

09.11.2012
Characterization of the thermal processes involved in heat-assisted magnetic recording paves the way for commercial devices

Most electronic data is stored on magnetic hard drives that spin at many thousands of revolutions per minute. To keep pace with ever-growing storage demand, however, achieving greater storage capacities by simply increasing the size of disks is infeasible.

The required spinning speed would put immense physical strain on the components, particularly on the writing ‘head’ — a small needle-like object used to write data at particular points on the disk (see image).

An alternative technology, heat-assisted magnetic recording (HAMR), is now a significant step closer to commercial realization, thanks to the efforts of Baoxi Xu and his co-workers at the A*STAR Data Storage Institute, Singapore1. In a system using HAMR, laser light is emitted from a diode on the write head to locally heat the disk during data writing. This technique has the potential to increase a standard disk’s recording density by as much as two orders of magnitude. However, the additional heat can cause components such as the write head to destabilize and fall out of alignment.

By studying the temperature increase of the head, the thermal effects on the disk and the thermal response of the lubricant in HAMR, Xu and his co-workers discovered how to maximize the recording density of the medium. They began by establishing the three major heat sources present in the device: the laser diode, the optical transducer, which concentrates the incident light into a nanometer-sized spot, and the write pole, which performs the physical recording.

They found that the temperature of the transducer depends on both its size and distance from the write pole — both of which can be easily controlled in a commercial device. They also found that the temperature rise in the HAMR head does not significantly inhibit the performance of the laser diode, which is important.

Xu and his team’s results showed that the recording density of the medium can be maximized by reducing the number of layers through which the heat energy must pass before it can dissipate. This will be of prime importance for achieving the required high-density data storage goals of commercial devices. This study therefore represents an important breakthrough in our understanding of HAMR, and will be essential in bringing this technology closer to commercial fruition.

“Our work indicates the seriousness of the problems in the HAMR head, which gives a reference for HAMR design, and also provides a direction for improving thermal structures for high-density HAMR recording,” Xu says.

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Journal information

Xu, B. X., Liu, Z. J., Ji, R., Toh, Y. T., Hu, J. F. et al. Thermal issues and their effects on heat-assisted magnetic recording system (invited). Journal of Applied Physics 111, 07B701 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>