Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Electrically enhanced recall

11.12.2012
Operating tiny magnetic memories under electrical fields reduces power demand and could enable storage and retrieval of data at much higher speeds than conventional devices

Random-access memory (RAM) is a fast electronic device used in computers to temporarily store data. Traditional RAM is based on the flow of electrical current for data processing. To make RAM faster, more energy efficient and capable of storing more information in a smaller volume, hardware developers are investigating RAM based on magnetic fields. Miniaturization of these devices, however, is hampered by thermal instabilities.

Hao Meng and his co-workers at the A*STAR Data Storage Institute have now shown how electric fields can help to circumvent this instability in tiny magnetic memories, as well as reduce operating power. “This means more information can be stored in a single chip at a cheaper price,” says Meng.

Meng and his team investigated a type of memory that incorporates so-called ‘magnetic tunnel junctions’ (MTJs). Other researchers have previously observed electric-field induced improvements in MTJs, but only in fairly large devices — about 7 micrometers across. Large structures limit the writing speed and suffer from poor compatibility with other electronic components. Meng and his team demonstrated that the concept is also applicable to smaller and faster MTJs that can be integrated more easily.

MTJs are an ideal building block for magnetic memories because of their simplicity and large output signal. In general, they consist of just two magnetic layers separated by a thin insulating barrier. A current passing through the device writes the binary information by controlling the direction of the magnetization in one of the magnetic layers.
This process stores information as either a ‘one’ or a ‘zero’, depending on whether the induced magnetization is parallel or antiparallel to the magnetization of the second magnetic layer. A measurement of the resistance across the intermediate barrier can then read out the information as it is needed.

The researchers are working to make MTJs smaller so that they can squeeze in more information. However, smaller devices require larger current densities to switch the magnetization: this leads to heating and makes them less efficient. As a workaround, Meng and his co-workers applied just 0.2 volts across electrodes attached to each side of a 150-nanometer MTJ made of CoFeB-MgO. This reduced the magnetic field required to switch the magnetization by as much as 30% which, in turn, decreased the writing current density.

“Such devices could improve the data transfer rate; that is, how fast you can copy your files from one device to another,” says Meng.

Journal information

Meng, H., Sbiaa, R., Akhtar, M. A. K., Liu, R. S., Naik, V. B. & Wang, C. C. Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. Applied Physics Letters 100, 122405 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>