Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Electrically enhanced recall

11.12.2012
Operating tiny magnetic memories under electrical fields reduces power demand and could enable storage and retrieval of data at much higher speeds than conventional devices

Random-access memory (RAM) is a fast electronic device used in computers to temporarily store data. Traditional RAM is based on the flow of electrical current for data processing. To make RAM faster, more energy efficient and capable of storing more information in a smaller volume, hardware developers are investigating RAM based on magnetic fields. Miniaturization of these devices, however, is hampered by thermal instabilities.

Hao Meng and his co-workers at the A*STAR Data Storage Institute have now shown how electric fields can help to circumvent this instability in tiny magnetic memories, as well as reduce operating power. “This means more information can be stored in a single chip at a cheaper price,” says Meng.

Meng and his team investigated a type of memory that incorporates so-called ‘magnetic tunnel junctions’ (MTJs). Other researchers have previously observed electric-field induced improvements in MTJs, but only in fairly large devices — about 7 micrometers across. Large structures limit the writing speed and suffer from poor compatibility with other electronic components. Meng and his team demonstrated that the concept is also applicable to smaller and faster MTJs that can be integrated more easily.

MTJs are an ideal building block for magnetic memories because of their simplicity and large output signal. In general, they consist of just two magnetic layers separated by a thin insulating barrier. A current passing through the device writes the binary information by controlling the direction of the magnetization in one of the magnetic layers.
This process stores information as either a ‘one’ or a ‘zero’, depending on whether the induced magnetization is parallel or antiparallel to the magnetization of the second magnetic layer. A measurement of the resistance across the intermediate barrier can then read out the information as it is needed.

The researchers are working to make MTJs smaller so that they can squeeze in more information. However, smaller devices require larger current densities to switch the magnetization: this leads to heating and makes them less efficient. As a workaround, Meng and his co-workers applied just 0.2 volts across electrodes attached to each side of a 150-nanometer MTJ made of CoFeB-MgO. This reduced the magnetic field required to switch the magnetization by as much as 30% which, in turn, decreased the writing current density.

“Such devices could improve the data transfer rate; that is, how fast you can copy your files from one device to another,” says Meng.

Journal information

Meng, H., Sbiaa, R., Akhtar, M. A. K., Liu, R. S., Naik, V. B. & Wang, C. C. Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. Applied Physics Letters 100, 122405 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>