Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Adopting changes

19.07.2012
New insights into the stable magnetism of phase-change semiconductors could enable the development of ultra-high-speed data storage
Phase-change semiconductors have the ability to switch back and forth between amorphous (non-crystalline solid) and crystalline phases upon heating. As such, they are used widely in data storage and computer memory applications, for the reason that information can be written in binary form using the two distinct states.

One particular phase-change alloy currently used in rewritable disc technology is that of germanium, antimony and tellunium, or Ge2Sb2Te5 (GST). Researchers believe that this material may prove useful for the field of spintronics, generating a way of storing data which takes advantage of the inherent angular momentum, or spin, of electrons present in the material.

Recent research indicates that the atoms in GST could naturally create a stable bond with certain metals, thereby generating a permanent and stable ferromagnetic state potentially useful for high-speed read/write storage. However, to date, researchers have been unsure exactly how GST is able to form a stable ferromagnetic state.

Now, Kewu Bai at the A*STAR Institute for High Performance Computing, together with co-workers from A*STAR’s Data Storage Institute and the Singapore University of Technology and Design, have completed an in-depth analysis of GST and its ability to maintain stable ferromagnetism when doped with iron.

“Alloying magnetic elements such as iron with semiconductors provides the materials necessary for future spintronics applications,” explains Bai. “We know very little about the processes behind ferromagnetism from doping phase-change materials with metals, because the commonly used experimental techniques, such as X-ray diffraction, transmission microscopy and X-ray absorption, are not sufficient to characterize material microstructures.”

The research team instead used first-principle calculations to determine the validity of the experiments they carried out. First-principle calculations use the inherent laws of nature — for example, bonding laws between atoms and laws for electron movements — to build up an exact picture of the chemical structures at work, rather than relying on best-fit parameters in computer models.

“We used first-principle calculations to locate the site in GST at which iron molecules preferred to bond,” explains Bai. “The mechanism that led to the observed ferromagnetism was then uncovered.”

The researchers discovered that the iron molecules preferred to bond with the antimony molecules in GST. Along certain orientations within the crystalline phase, the iron–antimony bonding becomes dominant, leading to a stable ferromagnetism in the material.

“We are still in close collaboration with the Data Storage Institute team to explore multifunctional phase-change materials further,” explains Bai. “We hope to test our criteria for other transition metals that could also cause ferromagnetism in GST.”
The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of High Performance Computing

References:

Ding, D. et al. Origin of ferromagnetism and the design principle in phase-change magnetic materials. Physical Review B 84, 214416 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>