Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Data storage: Adopting changes

19.07.2012
New insights into the stable magnetism of phase-change semiconductors could enable the development of ultra-high-speed data storage
Phase-change semiconductors have the ability to switch back and forth between amorphous (non-crystalline solid) and crystalline phases upon heating. As such, they are used widely in data storage and computer memory applications, for the reason that information can be written in binary form using the two distinct states.

One particular phase-change alloy currently used in rewritable disc technology is that of germanium, antimony and tellunium, or Ge2Sb2Te5 (GST). Researchers believe that this material may prove useful for the field of spintronics, generating a way of storing data which takes advantage of the inherent angular momentum, or spin, of electrons present in the material.

Recent research indicates that the atoms in GST could naturally create a stable bond with certain metals, thereby generating a permanent and stable ferromagnetic state potentially useful for high-speed read/write storage. However, to date, researchers have been unsure exactly how GST is able to form a stable ferromagnetic state.

Now, Kewu Bai at the A*STAR Institute for High Performance Computing, together with co-workers from A*STAR’s Data Storage Institute and the Singapore University of Technology and Design, have completed an in-depth analysis of GST and its ability to maintain stable ferromagnetism when doped with iron.

“Alloying magnetic elements such as iron with semiconductors provides the materials necessary for future spintronics applications,” explains Bai. “We know very little about the processes behind ferromagnetism from doping phase-change materials with metals, because the commonly used experimental techniques, such as X-ray diffraction, transmission microscopy and X-ray absorption, are not sufficient to characterize material microstructures.”

The research team instead used first-principle calculations to determine the validity of the experiments they carried out. First-principle calculations use the inherent laws of nature — for example, bonding laws between atoms and laws for electron movements — to build up an exact picture of the chemical structures at work, rather than relying on best-fit parameters in computer models.

“We used first-principle calculations to locate the site in GST at which iron molecules preferred to bond,” explains Bai. “The mechanism that led to the observed ferromagnetism was then uncovered.”

The researchers discovered that the iron molecules preferred to bond with the antimony molecules in GST. Along certain orientations within the crystalline phase, the iron–antimony bonding becomes dominant, leading to a stable ferromagnetism in the material.

“We are still in close collaboration with the Data Storage Institute team to explore multifunctional phase-change materials further,” explains Bai. “We hope to test our criteria for other transition metals that could also cause ferromagnetism in GST.”
The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of High Performance Computing

References:

Ding, D. et al. Origin of ferromagnetism and the design principle in phase-change magnetic materials. Physical Review B 84, 214416 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

Robust and functional – surface finishing by suspension spraying

19.09.2017 | Materials Sciences

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>