Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data processing: Tin for faster chips

Intensive research is being conducted worldwide on a material that promises a revolution in data processing. For the first time ever, physicists have now produced this from a very simple substance.

To process and save data more and more quickly, to build even smaller and more powerful chips: these are the goals pursued by numerous research teams around the world.

Topological insulator: in a layer of tin, electrons separate automatically according to the orientation of their spin, symbolized by arrows.

(Markus R. Scholz/Arjun Kartha,

For some years now, one special material class has been at the heart of their efforts, so-called topological insulators. Within these, electrons automatically separate according to their respective spin orientation, entirely without the use of electric or magnetic fields.

“This property is of far-reaching significance,” explains Professor Ralph Claessen from the Institute of Physics at the University of Würzburg: “If you apply electrical contacts to topological insulators, you can build circuits that transmit information coded with the spin orientation.” This new data transmission method is no longer based on the transport of electrical charges. It is therefore much faster and more reliable.

Why tin represents progress

Würzburg physicists have now, for the first time, succeeded in creating topological insulators made from tin, a simple and readily available material. “This makes production much easier because insulators like these have only ever been made from complex chemical compounds or hazardous materials,” says Claessen’s colleague Jörg Schäfer.

The physicists are presenting their findings in the journal “Physical Review Letters”. They have achieved their success as part of an international collaboration with teams from Switzerland and the USA as well as from the Jülich Research Center. At Würzburg’s Institute of Physics, Professor Laurens Molenkamp also works with topological insulators, and successfully so: a few years ago, motivated by theoretical predictions, he became the first person to verify the unusual properties of this material class in a series of experiments.

How the topological insulator came about

In the new experiments under Ralph Claessen’s chairmanship and Jörg Schäfer’s leadership, thin layers of tin were vapor-deposited onto a semiconductor substrate extremely slowly. An orderly crystal lattice of tin atoms formed, identical to that of diamond.

“Experiments then revealed that this layer has the unusual properties we were looking for: the spins of the electrons are sorted into two directions with opposite magnetic needle orientation, and the two groups move in opposite directions,” says Schäfer. This was proven with spin-resolved photoemission.

“This has enabled us to show, for the very first time, that the phenomenon of automatic spin separation also exists in a simple, elementary crystal lattice,” enthuses Schäfer. As a result, he believes that the production of practical topological insulators is now tantalizingly close. The new experiments were underpinned by theoretical observations that Würzburg physics professor Werner Hanke made with colleagues in Jülich.

Next steps for the physicists

Since the spin separation in the tin lattice itself can now be reliably produced, the physicists next want to explore and optimize the conductive behavior of complete structures with electrical contacts.

Initial demonstrations of spin transport in layers with topological materials have already worked at temperatures well below freezing. So, for practical application, a number of technological issues still need to be clarified, including the realization of circuits that work without cooling. For this purpose, the Würzburg physicists are now working intensively together, pooling their expertise in material production and analysis.

“Elemental Topological Insulator with Tunable Fermi Level: Strained alpha-Sn on InSb(001)”, A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. Höpfner, C. Blumenstein, G. Landolt, J. H. Dil, N. C. Plumb, M. Radovic, A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D. Wortmann, G. Li, W. Hanke, R. Claessen, and J. Schäfer, Physical Review Letters 111, 157205 (October 2013), DOI: 10.1103/PhysRevLett.111.157205


Dr. Jörg Schäfer, Institute of Physics, University of Würzburg,

Robert Emmerich | Uni Würzburg
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>