Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness in the Infrared

03.02.2009
The darkness and quality of the sky at Calar Alto Observatory is outstanding not only for astronomical observations in visible light, but also in the infrared.

A recent study based on an extensive data set demonstrates that Calar Alto summit occupies one of the world leading places among the darkest astronomical observatories in the infrared. This analysis complements a previous scientific study centred on observations in visible light. It is confirmed that the fraction of useful time for astronomical observations at Calar Alto is around 70%.

Modern astronomy relies not only on visible light. Current technology allows astronomers to study the universe also through the emission that celestial bodies send towards us also in invisible regions of the electromagnetic spectrum, such as ultraviolet light, infrared, and radio radiation.

The rainbow displays the whole set of colours of visible light: short (violet, blue), medium (green, yellow) and long (orange, red) wavelengths can be mixed up to produce white light. But the stars emit "light" with wavelengths even longer than those corresponding to red colour. This light, "redder than red", is usually known as infrared radiation. It cannot be seen with our eyes, but modern detectors and cameras can capture it. The study of infrared radiation coming from space offers a wealth of information about star birth, remote galaxies, the structure of the universe and many other fascinating problems of contemporary astrophysics.

For this reason, many state-of-the-art astronomical facilities devote a good part of their time and technology to the study of the universe in the infrared part of the spectrum, and having a sky of good infrared quality is mandatory for this.

An exhaustive study analysing the quality of the sky at Calar Alto Observatory in the infrared has been published recently. This scientific work extends, complements and confirms a previous one centred on visible light. The data used were taken with two of the telescopes of Calar Alto Observatory and two different infrared cameras, during the last four years. This has allowed a throughout analysis of the sky brightness in three different infrared "colours" (or "bands": J, H and K), assessing the sky quality and seasonal variations on the basis of a statistically significant and high-quality data set. A good fraction of the sky brightness measurements were performed on images obtained in the frame of one of the most outstanding scientific projects being carried out at Calar Alto: the ALHAMBRA survey.

The authors of this work, leaded by Sebastián Sánchez, conclude that "Calar Alto is as dark in the near-infrared as most of the other astronomical sites in the world with which we could compare it." Even more, for the J and H bands, "Calar Alto can be quoted among the darkest astronomical sites in the world", and for the K band "its sky brightness is clearly comparable with most astronomical sites, apart from Mauna Kea." One more result refers to the instrumental contribution to the infrared background in the K band, that is shown to be really low compared to the natural sky brightness.

The article also refers to the air turbulence and its impact on the sharpness of astronomical images (what is usually called the "seeing"). The authors conclude that the contribution of domes, telescopes and instruments to the degradation of the image quality is only around a 10%, meaning that the instruments take good profit from the intrinsically good natural conditions at the mountain.

Finally, the study evaluates the fraction of the time that is useful for astronomical observations, reaching conclusions fully compatible with the previous study, implying that at Calar Alto approximately 70% of the time can be used for scientific work.

Calar Alto Observatory, with its set of telescopes and ancillary facilities, remains the most important astronomical resource in the European continent. The authors of this study conclude that "this observatory is a good candidate for the location of future large aperture optical/near-infrared telescopes".

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es
http://www.caha.es/calar-alto-darkness-in-the-infrared_en.html

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>