Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness in the Infrared

03.02.2009
The darkness and quality of the sky at Calar Alto Observatory is outstanding not only for astronomical observations in visible light, but also in the infrared.

A recent study based on an extensive data set demonstrates that Calar Alto summit occupies one of the world leading places among the darkest astronomical observatories in the infrared. This analysis complements a previous scientific study centred on observations in visible light. It is confirmed that the fraction of useful time for astronomical observations at Calar Alto is around 70%.

Modern astronomy relies not only on visible light. Current technology allows astronomers to study the universe also through the emission that celestial bodies send towards us also in invisible regions of the electromagnetic spectrum, such as ultraviolet light, infrared, and radio radiation.

The rainbow displays the whole set of colours of visible light: short (violet, blue), medium (green, yellow) and long (orange, red) wavelengths can be mixed up to produce white light. But the stars emit "light" with wavelengths even longer than those corresponding to red colour. This light, "redder than red", is usually known as infrared radiation. It cannot be seen with our eyes, but modern detectors and cameras can capture it. The study of infrared radiation coming from space offers a wealth of information about star birth, remote galaxies, the structure of the universe and many other fascinating problems of contemporary astrophysics.

For this reason, many state-of-the-art astronomical facilities devote a good part of their time and technology to the study of the universe in the infrared part of the spectrum, and having a sky of good infrared quality is mandatory for this.

An exhaustive study analysing the quality of the sky at Calar Alto Observatory in the infrared has been published recently. This scientific work extends, complements and confirms a previous one centred on visible light. The data used were taken with two of the telescopes of Calar Alto Observatory and two different infrared cameras, during the last four years. This has allowed a throughout analysis of the sky brightness in three different infrared "colours" (or "bands": J, H and K), assessing the sky quality and seasonal variations on the basis of a statistically significant and high-quality data set. A good fraction of the sky brightness measurements were performed on images obtained in the frame of one of the most outstanding scientific projects being carried out at Calar Alto: the ALHAMBRA survey.

The authors of this work, leaded by Sebastián Sánchez, conclude that "Calar Alto is as dark in the near-infrared as most of the other astronomical sites in the world with which we could compare it." Even more, for the J and H bands, "Calar Alto can be quoted among the darkest astronomical sites in the world", and for the K band "its sky brightness is clearly comparable with most astronomical sites, apart from Mauna Kea." One more result refers to the instrumental contribution to the infrared background in the K band, that is shown to be really low compared to the natural sky brightness.

The article also refers to the air turbulence and its impact on the sharpness of astronomical images (what is usually called the "seeing"). The authors conclude that the contribution of domes, telescopes and instruments to the degradation of the image quality is only around a 10%, meaning that the instruments take good profit from the intrinsically good natural conditions at the mountain.

Finally, the study evaluates the fraction of the time that is useful for astronomical observations, reaching conclusions fully compatible with the previous study, implying that at Calar Alto approximately 70% of the time can be used for scientific work.

Calar Alto Observatory, with its set of telescopes and ancillary facilities, remains the most important astronomical resource in the European continent. The authors of this study conclude that "this observatory is a good candidate for the location of future large aperture optical/near-infrared telescopes".

David Galadi-Enriquez | alfa
Further information:
http://www.caha.es
http://www.caha.es/calar-alto-darkness-in-the-infrared_en.html

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>