Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark-matter search plunges physicists to new depths

12.08.2010
This month physicist Juan Collar and his associates are taking their attempt to unmask the secret identity of dark matter into a Canadian mine more than a mile underground.

The team is deploying a 4-kilogram bubble chamber at SNOLab, which is part of the Sudbury Neutrino Observatory in Ontario, Canada. A second 60-kilogram chamber will follow later this year. Scientists anticipate that dark matter particles will leave bubbles in their tracks when passing through the liquid in one of these chambers.

Dark matter accounts for nearly 90 percent of all matter in the universe. Although invisible to telescopes, scientists can observe the gravitational influence that dark matter exerts over galaxies.

"There is a lot more mass than literally meets the eye," said Collar, Associate Professor in Physics at the University of Chicago. "When you look at the matter budget of the universe, we have a big void there that we can't explain."

Likely suspects for what constitutes dark matter include Weakly Interacting Massive Particles (WIMPS) and axions. Theorists originally proposed the existence of both these groups of subatomic particles to address issues unrelated to dark matter.

"These seem to be perfect to explain all of these observations that give us this evidence for dark matter, and that makes them very appealing," Collar said.

SNOLab will be the most ambitious in a series of underground locations where Collar and his colleagues have searched for dark matter. In 2004, they established the Chicagoland Observatory for Underground Particle Physics (COUPP) at Fermi National Accelerator Laboratory.

"We started with a detector the size of a test tube and now have increased the mass by a factor of more than a thousand," said Fermilab physicist Andrew Sonnenschein. "It's exciting to see the first bubble chamber being sent off to SNOLab, because the low level of interference we can expect from the cosmic rays there will make our search for dark matter enormously more sensitive."

Bubble-chamber technology

The COUPP collaboration consists of scientists from UChicago, Fermilab and Indiana University at South Bend. In 2008 the collaboration released its first results that established an old technology of particle physics—the bubble chamber—as a potential dark-matter detector.

COUPP extends to the city of Chicago's flood-control infrastructure, called the Deep Tunnel. The city has granted COUPP scientists access to the tunnel, 330 feet underground, to test prototypes of their instruments. The collaboration also tested instruments in a chamber 350 feet below Fermilab, and in a sub-basement of the Laboratory for Astrophysics and Space Research on the UChicago campus.

Collar continually seeks underground venues for his research in order to screen out false signals from various natural radiation sources, including cosmic rays from deep space. "It's an interesting lifestyle," Collar said.

The troublesome underground radiation sources consist of charged particles that lose energy as they traverse through a mile or more of rock. But rock has no impact on particles that interact weakly with matter, such as WIMPS, thus the move to Sudbury.

"SNOLab is a very special, spectacular place, because the infrastructure that the Canadians have developed down there is nothing short of amazing," Collar said. Even though SNOLab sits atop a working nickel mine, conditions there are pristinely antiseptic.

"As you walk in, you have to shower to remove any trace of dust," he said. "It's a clean-room atmosphere, meaning that there's essentially no specks of dust anywhere. We have to worry about such things, sources of radiation associated with dust."

Collar also is a member of the Coherent Germanium Neutrino Technology (CoGeNT) collaboration, which operates a detector that sits nearly half a mile deep at the Soudan Underground Mine State Park in northern Minnesota. The 60-kilogram detector that Collar and colleagues will install at SNOLab later this year, meanwhile, undergoes testing in a tunnel 350 feet beneath Fermilab.

Linking the two sites is an invisible beam of neutrinos that stretches 450 miles from Fermi to Soudan. The beam is part of the Main Injector Neutrino Oscillation Search (MINOS), a particle-physics experiment that is unrelated to the search for dark matter.

The two detectors rely on entirely different techniques. CoGeNT uses a new type of germanium detector that targets the detection of light WIMPS.

"Most of us have been concentrating on intermediate-mass WIMPS for decades," Collar said. "In the last few years the theoreticians have been telling us more and more, look, under these other sets of assumptions, it could be a lighter WIMP. This device is actually the first of its kind in the sense that it's targeted specifically for light WIMPS. We're seeing interesting things with it that we don't fully understand yet."

Collar estimates that it'll take a decade or more for physicists to become completely convinced that they've seen dark-matter particles.

"It's going to take a lot of information from very many different points of view and entirely independent techniques," he said. "One day we'll figure it out.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu/

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>