Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark-matter search plunges physicists to new depths

12.08.2010
This month physicist Juan Collar and his associates are taking their attempt to unmask the secret identity of dark matter into a Canadian mine more than a mile underground.

The team is deploying a 4-kilogram bubble chamber at SNOLab, which is part of the Sudbury Neutrino Observatory in Ontario, Canada. A second 60-kilogram chamber will follow later this year. Scientists anticipate that dark matter particles will leave bubbles in their tracks when passing through the liquid in one of these chambers.

Dark matter accounts for nearly 90 percent of all matter in the universe. Although invisible to telescopes, scientists can observe the gravitational influence that dark matter exerts over galaxies.

"There is a lot more mass than literally meets the eye," said Collar, Associate Professor in Physics at the University of Chicago. "When you look at the matter budget of the universe, we have a big void there that we can't explain."

Likely suspects for what constitutes dark matter include Weakly Interacting Massive Particles (WIMPS) and axions. Theorists originally proposed the existence of both these groups of subatomic particles to address issues unrelated to dark matter.

"These seem to be perfect to explain all of these observations that give us this evidence for dark matter, and that makes them very appealing," Collar said.

SNOLab will be the most ambitious in a series of underground locations where Collar and his colleagues have searched for dark matter. In 2004, they established the Chicagoland Observatory for Underground Particle Physics (COUPP) at Fermi National Accelerator Laboratory.

"We started with a detector the size of a test tube and now have increased the mass by a factor of more than a thousand," said Fermilab physicist Andrew Sonnenschein. "It's exciting to see the first bubble chamber being sent off to SNOLab, because the low level of interference we can expect from the cosmic rays there will make our search for dark matter enormously more sensitive."

Bubble-chamber technology

The COUPP collaboration consists of scientists from UChicago, Fermilab and Indiana University at South Bend. In 2008 the collaboration released its first results that established an old technology of particle physics—the bubble chamber—as a potential dark-matter detector.

COUPP extends to the city of Chicago's flood-control infrastructure, called the Deep Tunnel. The city has granted COUPP scientists access to the tunnel, 330 feet underground, to test prototypes of their instruments. The collaboration also tested instruments in a chamber 350 feet below Fermilab, and in a sub-basement of the Laboratory for Astrophysics and Space Research on the UChicago campus.

Collar continually seeks underground venues for his research in order to screen out false signals from various natural radiation sources, including cosmic rays from deep space. "It's an interesting lifestyle," Collar said.

The troublesome underground radiation sources consist of charged particles that lose energy as they traverse through a mile or more of rock. But rock has no impact on particles that interact weakly with matter, such as WIMPS, thus the move to Sudbury.

"SNOLab is a very special, spectacular place, because the infrastructure that the Canadians have developed down there is nothing short of amazing," Collar said. Even though SNOLab sits atop a working nickel mine, conditions there are pristinely antiseptic.

"As you walk in, you have to shower to remove any trace of dust," he said. "It's a clean-room atmosphere, meaning that there's essentially no specks of dust anywhere. We have to worry about such things, sources of radiation associated with dust."

Collar also is a member of the Coherent Germanium Neutrino Technology (CoGeNT) collaboration, which operates a detector that sits nearly half a mile deep at the Soudan Underground Mine State Park in northern Minnesota. The 60-kilogram detector that Collar and colleagues will install at SNOLab later this year, meanwhile, undergoes testing in a tunnel 350 feet beneath Fermilab.

Linking the two sites is an invisible beam of neutrinos that stretches 450 miles from Fermi to Soudan. The beam is part of the Main Injector Neutrino Oscillation Search (MINOS), a particle-physics experiment that is unrelated to the search for dark matter.

The two detectors rely on entirely different techniques. CoGeNT uses a new type of germanium detector that targets the detection of light WIMPS.

"Most of us have been concentrating on intermediate-mass WIMPS for decades," Collar said. "In the last few years the theoreticians have been telling us more and more, look, under these other sets of assumptions, it could be a lighter WIMP. This device is actually the first of its kind in the sense that it's targeted specifically for light WIMPS. We're seeing interesting things with it that we don't fully understand yet."

Collar estimates that it'll take a decade or more for physicists to become completely convinced that they've seen dark-matter particles.

"It's going to take a lot of information from very many different points of view and entirely independent techniques," he said. "One day we'll figure it out.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>