Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Matter Used to Measure Age of Universe

02.03.2010
Astronomers from the United States and Europe have used a gravitational lens -- a distant, light-bending clump of dark matter -- to make a new estimate of the Hubble constant, which determines the size and age of the universe.

A paper describing the work appears in the March issue of The Astrophysical Journal.

The Hubble constant has previously been calculated by using NASA's Hubble Space Telescope to look at distant supernovae, and by measurements of the cosmic microwave background -- radiation leftover from the Big Bang, said Chris Fassnacht, associate professor of physics at UC Davis. The new method provides an independent check on the other two, he said.

A gravitational lens is a distant object, such as a galaxy surrounded by dark matter, that exerts a gravitational pull on light passing through it. Other galaxies behind the lens, from our point of view, appear distorted. In the case of the object B1608+656, astronomers on Earth see four distorted images of the same background object.

Fassnacht began studying B1608+656 as a graduate student a decade ago. Because the mass distribution of the lens is now well understood as a result of recent Hubble Space Telescope observations, it is possible to use it to calculate the Hubble constant, he said.

It works something like this. Two photons of light leave the background galaxy at the same time and travel around the lens, their paths distorted in different ways by the gravitational field so that they arrive on Earth at slightly different times. Based on that time delay, it is possible to calculate the distance of the entire route, and then infer the Hubble constant.

The timing is set by waiting for a change in the background object -- for example, for it to become more luminous. If the travel times are slightly different, the different images of the background object will seem to brighten at slightly different times.

Imagine two drivers leaving Stanford to drive to Davis, one by the East Bay and one through San Francisco, Fassnacht said. Assuming both drivers maintain the exact same speed, they will arrive at Davis at different times. That difference can be used to work out the overall distance.

Gravitational lensing has never before been used in such a precise way, said co-author Philip Marshall of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Stanford University. Several groups are now working on extending the technique with other gravitational lenses.

The study was led by Sherry Suyu, University of Bonn, Germany. Other authors are: Stefan Hilbert, University of Bonn; Matthew Auger and Tommaso Treu, UC Santa Barbara; Roger Blandford, KIPAC and Stanford University; and Leon Koopmanns, Kapteyn Astronomical Institute, The Netherlands.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>