Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark Matter Used to Measure Age of Universe

02.03.2010
Astronomers from the United States and Europe have used a gravitational lens -- a distant, light-bending clump of dark matter -- to make a new estimate of the Hubble constant, which determines the size and age of the universe.

A paper describing the work appears in the March issue of The Astrophysical Journal.

The Hubble constant has previously been calculated by using NASA's Hubble Space Telescope to look at distant supernovae, and by measurements of the cosmic microwave background -- radiation leftover from the Big Bang, said Chris Fassnacht, associate professor of physics at UC Davis. The new method provides an independent check on the other two, he said.

A gravitational lens is a distant object, such as a galaxy surrounded by dark matter, that exerts a gravitational pull on light passing through it. Other galaxies behind the lens, from our point of view, appear distorted. In the case of the object B1608+656, astronomers on Earth see four distorted images of the same background object.

Fassnacht began studying B1608+656 as a graduate student a decade ago. Because the mass distribution of the lens is now well understood as a result of recent Hubble Space Telescope observations, it is possible to use it to calculate the Hubble constant, he said.

It works something like this. Two photons of light leave the background galaxy at the same time and travel around the lens, their paths distorted in different ways by the gravitational field so that they arrive on Earth at slightly different times. Based on that time delay, it is possible to calculate the distance of the entire route, and then infer the Hubble constant.

The timing is set by waiting for a change in the background object -- for example, for it to become more luminous. If the travel times are slightly different, the different images of the background object will seem to brighten at slightly different times.

Imagine two drivers leaving Stanford to drive to Davis, one by the East Bay and one through San Francisco, Fassnacht said. Assuming both drivers maintain the exact same speed, they will arrive at Davis at different times. That difference can be used to work out the overall distance.

Gravitational lensing has never before been used in such a precise way, said co-author Philip Marshall of the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory and Stanford University. Several groups are now working on extending the technique with other gravitational lenses.

The study was led by Sherry Suyu, University of Bonn, Germany. Other authors are: Stefan Hilbert, University of Bonn; Matthew Auger and Tommaso Treu, UC Santa Barbara; Roger Blandford, KIPAC and Stanford University; and Leon Koopmanns, Kapteyn Astronomical Institute, The Netherlands.

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>