Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dark matter detector sends first data from gold mine 1.5km underground

31.10.2013
Scientists testing the Large Underground Xenon (LUX) experiment have reported promising scientific and technological results today.

They have set up the experiment to identify the nature of dark matter, an invisible substance that physicists believe is all around us, making up most of the matter in the universe, but that barely has any effect on our every-day lives.

Scientists have published the first results from the Sanford laboratory today, which, they say, validate the experiment's design and performance. The research challenges previous studies that claim 'sightings' of dark matter.

They are now beginning a process to uncover the exact identity of the dark matter particle - a process equivalent to the work done by the Large Hadron Collider in identifying the Higgs boson.

Seventeen universities and research institutes in the USA and Portugal, and Imperial College London, UCL, University of Edinburgh in the UK, run the LUX experiment, with most funding coming from the National Science Foundation and Department of Energy in the USA.

The new laboratory is sited in a former gold mine nearly one and a half kilometres below the Black Hills in the American state of South Dakota. Work on LUX started in 2008 and the experiment was completed ready for an initial run earlier in 2013.

Here, scientists are operating some of the world's most sensitive equipment in an extremely sheltered environment, because they are looking for tiny and extremely rare flashes of light that would indicate a collision between a dark matter particle and a normal matter particle.

"These instruments take many years to build and we are always pushing new technologies to the limit," says Dr Henrique Araújo from the Department of Physics at Imperial College London who leads the College's team working on LUX.

"It is very significant that LUX worked as designed when we finally pushed the 'on' button. Many experiments never reach this stage."

Physicists believe that dark matter accounts for about a quarter of the energy in the Universe, compared with ordinary matter, which makes up only a twentieth. The rest consists of the even more mysterious dark energy.

Since the experiment was installed underground in February, they have been looking for Weakly Interacting Massive Particles (WIMPs), which are the prime candidates to constitute the dark matter in our galaxy and in the Universe.

These particles are thought to have mass like normal particles and create a tiny gravitational pull, but cannot be observed directly since they neither emit nor absorb light at any wavelength. On the largest scales, its presence can be inferred from the motion of stars within galaxies, and of individual galaxies in galactic clusters.

Collisions between WIMPs and normal matter are rare and extremely difficult to detect because cosmic-ray particles from space can overwhelm the already faint flashes expected from WIMPs.

Few cosmic rays can penetrate as deep underground as the LUX experiment and the detector is further protected from background radiation by being immersed in a shielding tank of ultra-pure water.

"We are able to detect the faint flashes of light very effectively using good internal reflector materials and very sensitive photon sensors," says Dr Araújo.

"LUX has significantly higher sensitivity than the previous world's best dark matter experiments – especially for the lightest WIMPs, which cause the faintest signals."

The new LUX result challenges evidence from other experiments, such as CoGeNT and DAMA, where scientists have previously claimed to have data about the nature of WIMPs.

Dr Araújo says: "A number of previous results make it look like WIMPs exist with a particularly low mass. While this may still turn out to be the case, our new data reveal that, on that occasion, it was a case of mistaken identity."

HUNTING FOR DARK MATTER

A decade ago, scientists of the UK-led ZEPLIN programme deployed the first dark matter detector of this type underground at the Boulby mine in North Yorkshire.

"We had a pioneering role in what has become the world's most sensitive dark matter search technology, building and operating three detectors at Boulby."

"The last and most sensitive, ZEPLIN-III, was built by our team at Imperial – until we concluded our programme in 2011 – joining LUX soon after."

Scientists including Dr Araújo are already designing – and soon will start building – the next-generation experiment, LZ, which is the coming together of the two programmes – LUX and ZEPLIN.

With a 7-tonne liquid xenon target, LZ will be 30 times larger than LUX and have over 100 times better range. It will be so sensitive that it will be limited only by the interference of background signals from astrophysical neutrinos. These similarly illusive particles were once a candidate to explain the dark matter problem — but physicists now know they are not massive enough to do the job.

LZ is a collaboration of 26 institutes in the US, UK, Portugal and Russia. Dr Araújo from Imperial leads the UK team on LZ, which counts also with colleagues from Edinburgh, UCL, Oxford and Sheffield universities as well as the Rutherford Appleton and Daresbury national laboratories.

HOW DOES IT WORK

At the heart of the experiment is a 6-foot-tall titanium 'thermal flask' filled with almost a third of a tonne of liquid xenon, cooled to minus 100 degrees centigrade.

When a WIMP hits a xenon atom it recoils – like a white billiard ball striking the opening triangle of coloured balls in a game of snooker – and photons of light are emitted; at the same time, this interaction also releases electrons from surrounding atoms.

The electrons are drawn upward by an electrical field and get absorbed into a thin layer of xenon gas at the top of the tank, releasing more photons.

Light detectors in the top and bottom of the tank are each capable of detecting these two photon signatures. The locations of the two signals can be pinpointed to within a few millimetres.

The energy of the interaction can be precisely measured from the brightness of the pulses of light. Any particles interacting in the xenon will cause these signals, but WIMP interactions are expected to have characteristic sizes which are quite different from those caused by ordinary particles.

Simon Levey | EurekAlert!
Further information:
http://www.imperial.ac.uk

Further reports about: Large Hadron Collider Universe cosmic ray dark matter faint flashes

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>