Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dark Energy Alternatives to Einstein Are Running Out of Room

Research by University of Arizona astronomy professor Rodger Thompson finds that a popular alternative to Albert Einstein’s theory for the acceleration of the expansion of the universe does not fit newly obtained data on a fundamental constant, the proton to electron mass ratio.
Thompson's findings, reported Jan. 9 at the American Astronomical Society meeting in Long Beach, Calif., impact our understanding of the universe and point to a new direction for the further study of its accelerating expansion.

To explain the acceleration of the expansion of the universe, astrophysicists have invoked dark energy – a hypothetical form of energy that permeates all of space. A popular theory of dark energy, however, does not fit new results on the value of the proton mass divided by the electron mass in the early universe.

Thompson computed the predicted change in the ratio by the dark energy theory (generally referred to as rolling scalar fields) and found it did not fit the new data.

UA alumnus Brian Schmidt, along with Saul Perlmutter and Adam Reiss, won the 2011 Nobel Prize in Physics for showing that the expansion of the universe is accelerating rather than slowing down as previously thought.

The acceleration can be explained by reinstating the "cosmological constant" into Einstein's theory of General Relativity. Einstein originally introduced the term to make the universe stand still. When it was later found that the universe was expanding, Einstein called the cosmological constant "his biggest blunder."

The constant was reinstated with a different value that produces the observed acceleration of the universe’s expansion. Physicists trying to calculate the value from known physics, however, get a number more than 10 to the power of 60 (one followed by 60 zeros) too large – a truly astronomical number.

That's when physicists turned to new theories of dark energy to explain the acceleration.

In his research, Thompson put the most popular of those theories to the test, targeting the value of a fundamental constant (not to be confused with the cosmological constant), the mass of the proton divided by the mass of the electron. A fundamental constant is a pure number with no units such as mass or length. The values of the fundamental constants determine the laws of physics. Change the number, and the laws of physics change. Change the fundamental constants by a large amount, and the universe becomes very different from what we observe.

The new physics model of dark energy that Thompson tested predicts that the fundamental constants will change by a small amount. Thompson identified a method of measuring the proton to electron mass ratio in the early universe several years ago, but it is only recently that astronomical instruments became powerful enough to measure the effect. More recently, he determined the exact amount of change that many of the new theories predict.

Last month, a group of European astronomers, using a massive radio telescope in Germany, made the most accurate measurement of the proton-to-electron mass ratio ever accomplished and found that there has been no change in the ratio to one part in 10 million at a time when the universe was about half its current age, around 7 billion years ago.

When Thompson put this new measurement into his calculations, he found that it excluded almost all of the dark energy models using the commonly expected values or parameters. If the parameter space or range of values is equated to a football field, then almost the whole field is out of bounds except for a single 2-inch by 2-inch patch at one corner of the field. In fact, most of the allowed values are not even on the field.

"In effect, the dark energy theories have been playing on the wrong field," Thompson said. "The 2-inch square does contain the area that corresponds to no change in the fundamental constants, and that is exactly where Einstein stands."

Thompson expects that physicists and astronomers studying cosmology will adapt to the new field of play, but for now, "Einstein is in the catbird seat, waiting for everyone else to catch up."

Jennifer Fitzenberger | University of Arizona
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>