Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dark Energy Alternatives to Einstein Are Running Out of Room

Research by University of Arizona astronomy professor Rodger Thompson finds that a popular alternative to Albert Einstein’s theory for the acceleration of the expansion of the universe does not fit newly obtained data on a fundamental constant, the proton to electron mass ratio.
Thompson's findings, reported Jan. 9 at the American Astronomical Society meeting in Long Beach, Calif., impact our understanding of the universe and point to a new direction for the further study of its accelerating expansion.

To explain the acceleration of the expansion of the universe, astrophysicists have invoked dark energy – a hypothetical form of energy that permeates all of space. A popular theory of dark energy, however, does not fit new results on the value of the proton mass divided by the electron mass in the early universe.

Thompson computed the predicted change in the ratio by the dark energy theory (generally referred to as rolling scalar fields) and found it did not fit the new data.

UA alumnus Brian Schmidt, along with Saul Perlmutter and Adam Reiss, won the 2011 Nobel Prize in Physics for showing that the expansion of the universe is accelerating rather than slowing down as previously thought.

The acceleration can be explained by reinstating the "cosmological constant" into Einstein's theory of General Relativity. Einstein originally introduced the term to make the universe stand still. When it was later found that the universe was expanding, Einstein called the cosmological constant "his biggest blunder."

The constant was reinstated with a different value that produces the observed acceleration of the universe’s expansion. Physicists trying to calculate the value from known physics, however, get a number more than 10 to the power of 60 (one followed by 60 zeros) too large – a truly astronomical number.

That's when physicists turned to new theories of dark energy to explain the acceleration.

In his research, Thompson put the most popular of those theories to the test, targeting the value of a fundamental constant (not to be confused with the cosmological constant), the mass of the proton divided by the mass of the electron. A fundamental constant is a pure number with no units such as mass or length. The values of the fundamental constants determine the laws of physics. Change the number, and the laws of physics change. Change the fundamental constants by a large amount, and the universe becomes very different from what we observe.

The new physics model of dark energy that Thompson tested predicts that the fundamental constants will change by a small amount. Thompson identified a method of measuring the proton to electron mass ratio in the early universe several years ago, but it is only recently that astronomical instruments became powerful enough to measure the effect. More recently, he determined the exact amount of change that many of the new theories predict.

Last month, a group of European astronomers, using a massive radio telescope in Germany, made the most accurate measurement of the proton-to-electron mass ratio ever accomplished and found that there has been no change in the ratio to one part in 10 million at a time when the universe was about half its current age, around 7 billion years ago.

When Thompson put this new measurement into his calculations, he found that it excluded almost all of the dark energy models using the commonly expected values or parameters. If the parameter space or range of values is equated to a football field, then almost the whole field is out of bounds except for a single 2-inch by 2-inch patch at one corner of the field. In fact, most of the allowed values are not even on the field.

"In effect, the dark energy theories have been playing on the wrong field," Thompson said. "The 2-inch square does contain the area that corresponds to no change in the fundamental constants, and that is exactly where Einstein stands."

Thompson expects that physicists and astronomers studying cosmology will adapt to the new field of play, but for now, "Einstein is in the catbird seat, waiting for everyone else to catch up."

Jennifer Fitzenberger | University of Arizona
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>