Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dark clouds, young stars, and a dash of Hollywood

30.10.2012
An astronomical project led by researchers from the Max Planck Institute for Astronomy (MPIA) has examined the earliest stages of star formation in unprecedented depth:

Using the European Space Agency's Herschel Space Telescope and techniques more commonly encountered in Hollywood blockbuster computer graphics than in astronomy, the researchers produced a three-dimensional map of the molecular cloud B68, a possible future birthplace for a low-mass star. Turning their attention to much more massive molecular clouds, the researchers also managed to identify a previously unobserved class of object that is likely the earliest known precursor of the birth of massive stars.


False-colour image of the dark cloud Barnard 68, prepared using data from the Herschel Space Telescope at different far-infrared wavelengths. The way in which the cloud appears to change shape depending on wavelength is a sign of uneven external illumination. In the bottom right corner, there are traces of an isolated object. This could be a cloud fragment in collision with Barnard 68.
Image credit: MPIA / Markus Nielbock

Stars are born in hiding, when dense regions within clouds of gas and dust collapse under their own gravity. But the clouds not only provide the raw material for star formation, they also absorb most of the light from their interior, hiding from view the crucial details of stellar birth – one of the key astronomical processes if we want to understand our own origins!

Now, two groups in the EPoS ("Earliest Phases of Star formation") project led by MPIA's Oliver Krause, using ESA's Herschel Space Telescope, report new results in understanding the earliest stages of star formation.

On the trail of the origin of low-mass stars (with less than about twice the mass of our Sun), a team led by Markus Nielbock (MPIA) has completed a detailed investigation of one of the best-known potential stellar birthplaces: the dark cloud (or "globule") Barnard 68 in the constellation Ophiuchus. Combining the Herschel Space Telescope's unrivaled sharpness and sensitivity in the far-infrared range with a method more often encountered in visual effects companies working on Hollywood blockbusters than in astronomy, the researchers were able to construct the most realistic 3D model of the cloud to date.

The method, adapted for this particular use by MPIA's Ralf Launhardt, uses what is known as raytracing: For each minute portion of the object that we can see, the line of sight is traced back into the object itself. The contribution by each portion of the light's path – is light being absorbed at this particular point? is it being emitted? if yes, at which wavelengths? – are added up. Raytracing is routinely used to produce realistic-looking computer-generated creatures, objects or whole scenes. Here, it helped to match light emitted within Barnard 68 at different wavelengths with simplified models of the cloud's three-dimensional shape, density and temperature distribution.

The results have shaken up some of what astronomers thought they knew about this cloud. The emerging picture is one of Barnard 68 condensing from a drawn-out filament, heated by unevenly distributed external radiation from the direction of the central plane of our home galaxy. The astronomers also found some signs pointing to a cloud fragment in collision with Barnard 68, which might lead to the cloud's collapse, and the formation of one or more low-mass stars, within the next hundreds of thousands of years, and whose existence had been predicted by a previous study (Burkert & Alves 2009).

As cosmic clouds go, Barnard 68 is rather small. Clouds of this size will give birth to a few low-mass stars at most. To find out how massive stars are born (mass greater than about twice the mass of the Sun), a team led by MPIA's Sarah Ragan turned Herschel's PACS camera to 45 significantly more massive dark clouds. The clouds contain numerous stars about to be born, so-called "protostars". While previous missions, such as NASA's Spitzer Space Telescope, have also searched for protostars, Herschel enables astronomers to probe deeper into the clouds than ever before. Younger protostars are hidden much more effectively within their clouds than older ones. Herschel managed to find the youngest and most primitive protostars known.

The new observations swelled the ranks of known protostars from 330 to nearly 500 and, most excitingly, led to the discovery of a new type of not-quite-a-star: dense regions at a mere 15 degrees above absolute zero (-258 degrees Celsius) with no sign of a protostar. These regions are likely to be in an early precursor stage of star formation. In astronomy, where timescales of hundreds of millions or of billions of years are the norm, the fact that this precursor stage is expected to last less than 1000 years makes it extremely short-lived. Studying these elusive, pristine objects lays a necessary foundation for all subsequent studies of star formation.

Contact information

Markus Nielbock (lead author, Barnard 68 article)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 445
Email: nielbock@mpia.de
Sarah Ragan (lead author, massive stars article)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 458
Email: ragan@mpia.de
Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2e.php?Aktuelles/PR/2012/PR121030/PR_121030_en.html

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>