Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dancing 'adatoms' help chemists understand how water molecules split

18.03.2009
The result might help understand chemical processes in energy generation or pollution cleanup

Single oxygen atoms dancing on a metal oxide slab, glowing brighter here and dimmer there, have helped chemists better understand how water splits into oxygen and hydrogen.

In the process, the scientists have visualized a chemical reaction that had previously only been talked about. The new work improves our understanding of the chemistry needed to generate hydrogen fuel from water or to clean contaminated water.

The scientists made the discovery while trying to determine the basics of how titanium dioxide -- a compound sometimes found in sunscreen -- breaks down water. The chemical reactions between water and oxygen are central to such varied processes as hydrogen production, breaking down pollutants, and in solar energy.

"Oxygen and water are involved in many, many reactions," said physicist Igor Lyubinetsky at the Department of Energy's Pacific Northwest National Laboratory, who reported the team's results in March 6 issue of the Physical Review Letters. "This mobility might interfere with some reactions and help others."

Bustling Bright Spots

While exploring titanium dioxide as a way to split water into its hydrogen and oxygen pieces, researchers can use a technique called scanning tunneling microscopy to watch the chemical reaction. The surface of a slab of titanium dioxide is like a corn field: rows of oxygen atoms rise from a patch of titanium atoms. The alternating oxygen and titanium rows look like stripes.

Scientists can also see some atoms and molecules that come to rest on the surface as bright spots. One such visible atom is a single oxygen atom that comes to rest on a titanium atom, called an "adatom". Chemists can only see water molecules if they drop the temperature dramatically -- at ambient temperature, water moves too fast for the method to pick them up.

In this work, PNNL scientists studied water's reactions with titanium dioxide at ambient temperature at EMSL, the DOE's Environmental Molecular Sciences Laboratory on the PNNL campus. Starting with a surface plated with a few oxygen adatoms, they added water -- and the adatoms started to dance.

"Suddenly, almost every adatom started to move back and forth along the titanium row," said Lyubinetsky. "From theory and previous work, we expected to see this along the row."

Remarkably, the adatoms didn't just slide up and down the stripes. They also bounced out of them and landed in others, like pogoing dancers in a mosh pit.

"We saw quite unexpected things. We thought it was very strange -- we saw adatoms jump over the rows," Lyubinetsky said. "We just couldn't explain it."

Calculating how much energy it would take for the adatoms to move by themselves, much less hop over an oxygen row, the chemists suspected the adatoms were getting help -- most likely from the invisible water molecules.

The Unseen Enabler

To make sense of the dancing adatoms, the team calculated how much energy it would take to move adatoms with the help of water molecules. If a water molecule sits down next to an adatom, one of the water's hydrogen atoms can jump to the adatom, forming two oxygen-hydrogen pairs.

These pairs are known as hydroxyls and tend to steal atoms from other molecules, including each other. One of the thieving hydroxyls can then nab the other's hydrogen atom, turning back into a water molecule. The water molecule floats off, leaving behind an adatom. Half the time, that adatom is one spot over -- which makes the original appear to have moved.

The chemists determined that water can help the adatom jump a row as well: If a water molecule and an adatom are situated on either side of a raised oxygen row, a row oxygen can serve as the middleman, handing over a hydrogen from the water molecule to the adatom. Again, two hydroxyls form, one ultimately stealing both hydrogens (with the help of the middleman) and zipping away as water. If the incoming water molecule has been stripped, the adatom appears to have hopped over.

The calculated energy required for these different scenarios fit well with the team's experimental data. When a row oxygen serves as a middleman, the process is known as "pseudo-dissociation", a reaction suggested by chemists but until now, never verified experimentally.

"We realized that only if we involved the pseudo-dissociative state of the water can we explain it," said Lyubinetsky. "Otherwise, all the calculations show there's too high a barrier, the adatom just cannot jump by itself."

Lyubinetsky points out that this shows that water itself can work as a catalyst. A catalyst is a molecule that can help a chemical reaction along and remain unchanged by the experience.

"Water is required to move the adatoms around, but like a catalyst it is not consumed in the reaction," he said. "You start with water and you end with water."

In the future, the team plans on determining if water can make the adatoms move other species and more than one space at a time. In addition, they will investigate how light affects the reaction.

Reference: Y. Du, N. A. Deskins, Z. Zhang, Z. Dohnálek, M. Dupuis, and I. Lyubinetsky, Two Pathways for Water Interaction with Oxygen Adatoms on TiO2(110), Phys Rev Letters, March 6, 2009, DOI 10.1103/PhysRevLett.102.096102

This work was supported by the Department of Energy's Office of Science.

Mary Beckman | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>