Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Curiosity's SAM Instrument Finds Water and More in Surface Sample

The first scoop of soil analyzed by the analytical suite in the belly of NASA's Curiosity rover reveals that fine materials on the surface of the planet contain several percent water by weight. The results were published today in Science as one article in a five-paper special section on the Curiosity mission.

"One of the most exciting results from this very first solid sample ingested by Curiosity is the high percentage of water in the soil," said Laurie Leshin, lead author of one paper and dean of the School Science at Rensselaer Polytechnic Institute.

The Sample Analysis at Mars instrument suite, prior to its installation on the Curiosity rover.
Image Credit: NASA Goddard

"About 2 percent of the soil on the surface of Mars is made up of water, which is a great resource, and interesting scientifically." The sample also released significant carbon dioxide, oxygen and sulfur compounds when heated.

Curiosity landed in Gale Crater on the surface of Mars on Aug. 6, 2012, charged with answering the question: "Could Mars have once harbored life?" To do that, Curiosity is the first rover on Mars to carry equipment for gathering and processing samples of rock and soil. One of those instruments was employed in the current research: the Sample Analysis at Mars (SAM) instrument suite, which includes a gas chromatograph, a mass spectrometer and a tunable laser spectrometer. These tools enable SAM to identify a wide range of chemical compounds and determine the ratios of different isotopes of key elements.

"This work not only demonstrates that SAM is working beautifully on Mars, but also shows how SAM fits into Curiosity's powerful and comprehensive suite of scientific instruments," said Paul Mahaffy, principal investigator for SAM at NASA's Goddard Space Flight Center in Greenbelt, Md. "By combining analyses of water and other volatiles from SAM with mineralogical, chemical and geological data from Curiosity's other instruments, we have the most comprehensive information ever obtained on Martian surface fines. These data greatly advance our understanding surface processes and the action of water on Mars."

Thirty-four researchers, all members of the Mars Science Laboratory Science Team, contributed to the paper.

In this study, scientists used the rover's scoop to collect dust, dirt and finely grained soil from a sandy patch known as Rocknest. Researchers fed portions of the fifth scoop into SAM. Inside SAM, the "fines"—the dust, dirt and fine soil—were heated to 1,535 degrees F (835 C).

Baking the sample also revealed a compound containing chlorine and oxygen, likely chlorate or perchlorate, previously found near the north pole on Mars. Finding such compounds at Curiosity's equatorial site suggests they could be distributed more globally. The analysis also suggests the presence of carbonate materials, which form in the presence of water.

In addition to determining the amount of the major gases released, SAM also analyzed ratios of isotopes of hydrogen and carbon in the released water and carbon dioxide. Isotopes are variants of the same chemical element with different numbers of neutrons, and therefore different atomic weights. SAM found that the ratio of some isotopes in the soil is similar to the ratio found in atmospheric samples analyzed earlier, indicating that the surface soil has interacted heavily with the atmosphere.

"The isotopic ratios, including hydrogen-to-deuterium ratios and carbon isotopes, tend to support the idea that as the dust is moving around the planet, it's reacting with some of the gases from the atmosphere," Leshin said.

SAM can also search for trace levels of organic compounds. Although several simple organic compounds were detected in the experiments at Rocknest, they aren't clearly Martian in origin. Instead, it is likely that they formed during the high-temperature experiments, when the heat decomposed perchlorates in the Rocknest samples, releasing oxygen and chlorine that then reacted with terrestrial organics already present in the SAM instrument.

A related paper, published in the Journal of Geophysical Research-Planets, details the findings of perchlorates and other chlorine-bearing compounds in the Rocknest sample. This paper is led by Daniel Glavin, a Mars Science Laboratory Science Team member at Goddard.

Glavin notes that SAM has the ability to perform another kind of experiment to address the question of whether organic molecules are present in the Martian samples. The SAM suite includes nine fluid-filled cups which hold chemicals that can react with organic molecules if present in the soil samples. "Because these reactions occur at low temperatures, the presence of perchlorates will not inhibit the detection of Martian organic compounds," said Glavin.

The combined results shed light on the composition of the planet's surface, while offering direction for future research.

"Mars has kind of a global layer, a layer of surface soil that has been mixed and distributed by frequent dust storms. So a scoop of this stuff is basically a microscopic Mars rock collection," said Leshin. "If you mix many grains of it together, you probably have an accurate picture of typical Martian crust. By learning about it in any one place you're learning about the entire planet."

Nancy Neal-Jones and Elizabeth Zubritsky
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-0039 / 301-614-5438 /
Guy Webster
NASA's Jet Propulsion Laboratory, Pasadena, Calif.
Mary Martialay
Rensselaer Polytechnic Institute

Nancy Neal-Jones | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>