Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder space scientists set for final spacecraft flyby of Mercury

30.09.2009
NASA's MESSENGER spacecraft, which is toting an $8.7 million University of Colorado at Boulder instrument, will make its third and final flyby of Mercury on Sept. 29 -- a clever gravity-assist maneuver that will steer it into orbit around the rocky planet beginning in March 2011.

The spacecraft will zip within 142 miles of the planet's surface at more than 100,000 miles per hour on Sept. 29, taking high-resolution color images of the surface terrain. MESSENGER also will be making ultraviolet and visible light measurements of the harsh planet's surface, its tenuous atmosphere and a comet-tailed gas cloud 25,000 thousand miles long that trails behind the planet.

MESSENGER is carrying seven instruments -- a camera, a magnetometer, an altimeter and four spectrometers -- and includes CU-Boulder's Mercury Atmospheric and Surface Composition Spectrometer, or MASCS. Despite the spacecraft's eye-popping speed, rapid rotation maneuvers during the flyby will allow the MASCS instrument to "stare" at a handful of selected targets such as surface craters as the spacecraft passes overhead, said CU-Boulder Senior Research Associate William McClintock.

"We will be pointing at each individual target from several different angles during the flyby, which will allow us to collect more data," said McClintock of CU-Boulder's Laboratory for Atmospheric and Space Physics and a MESSENGER mission co-investigator who led the development of the MASCS instrument. The MASCS team is particularly interested in unusual surface deposits spotted by the camera during Messenger's previous flybys, McClintock said.

"One of the big questions planetary scientist have is how much iron there is on Mercury's surface," said McClintock. "We hope to pinpoint the iron, determine what chemical form it is in and how it is bound up on the planet's surface." Iron, which dominates Mercury's core, is responsible for maintaining the planet's magnetic field.

The dynamic magnetic field of Mercury absorbs and stores energy from the powerful solar wind, periodically "snapping like a rubber band" and driving charged particles into the planet's surface, said McClintock. The collisions cause atoms of sodium, potassium and calcium -- and likely iron, silicon and aluminum -- to be ejected into the planet's wispy atmosphere, he said.

Some of the atoms are then accelerated by solar radiation pressure into the gigantic gas cloud tail, while other drift back down to the planet's surface, only to be lofted once again into the exosphere, where they make their way into gaseous tail, he said.

McClintock said that after the third and final flyby, the researchers will have collected about the same amount of data as they will gather during a single orbit around Mercury. Once MESSENGER settles into a yearlong pattern of twice-a-day orbits around Mercury in 2011, analyzing the massive streams of images and data "will be like drinking from a fire hose," said McClintock.

Dozens of CU-Boulder undergraduate students at LASP will become more and more involved in data analysis during the next several years as information and images pour back to Earth from MESSENGER said Mark Lankton, the LASP program manager for the MASCS instrument. The information will be streamed to LASP's Space Technology Building in the CU-Research Park.

"The hands-on space education and training opportunities offered to students at LASP in science, engineering and mission operations is available at few other places in the world," said LASP Director Daniel Baker, a co-investigator on the MESSENGER mission. "CU-Boulder undergraduates and graduate students are involved in virtually all of our space efforts, from designing and building flight instruments to controlling satellites from campus, which makes for a profound educational experience."

The 4.9 billion-mile-journey to Mercury requires MESSENGER to make more than 15 loops around the sun to guide it closer to Mercury's orbit. The craft is equipped with a large sunshade made from a heat-resistant ceramic fabric to protect it from the sun.

"During this third encounter, the MESSENGER camera will again image areas never before seen at close range, and we will obtain color images of other regions at resolutions superior to those of previous observations," said MESSENGER Principal Investigator Sean Solomon of the Carnegie Institution of Washington.

LASP also has a spectrometer riding on NASA's Cassini spacecraft that is now touring the Saturn system, a dust detector aboard the New Horizons spacecraft making its way to Pluto, and is leading a $485 million orbiting space mission slated for launch by NASA in 2013 to probe the past climate of Mars. CU-Boulder is the only research institution in the world to have designed and built space instruments for NASA that have been launched to every planet in the solar system.

William McClintock | EurekAlert!
Further information:
http://www.colorado.edu
http://messenger.jhuapl.edu/
http://lasp.colorado.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>