Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder faculty, students part of NASA's Juno Mission to Jupiter

02.08.2011
Gas giant may hold keys to understanding solar system formation, evolution

Several University of Colorado Boulder faculty and students are participating in NASA's Juno Mission to Jupiter, now slated for launch Aug. 5 from Florida's Kennedy Space Center and which is expected to help steer scientists toward the right recipe for planet-making.

The primary goal of the mission is to understand the origin and evolution of the massive gas planet, said CU-Boulder Professor Fran Bagenal of the Laboratory for Atmospheric and Space Physics, a mission co-investigator. The data should reveal not only the conditions of the early solar system, but also help scientists to better understand the hundreds of planetary systems recently discovered around other stars, she said.

After the sun formed, Jupiter got the majority of the "leftovers," said Juno Mission principal investigator Scott Bolton from the Southwest Research Institute in San Antonio. Since Jupiter has a larger mass than all of the other planets in the solar system combined, scientists believe it holds the keys to understanding how the planets formed and why some are rocky and others are gas giants, Bagenal said.

Once Juno reaches Jupiter orbit in 2016 after a 400-million-mile trip, the spacecraft will orbit the planet's poles 33 times, skimming roughly 3,000 miles above the cloud tops in a region below Jupiter's powerful radiation belts. While the spacecraft itself is about the size of a Volkswagen and encased in a protective radiation vault, its three solar panels that will unfurl in space will make the spinning spacecraft more than 65 feet in diameter.

Bagenal said scientists were continually surprised by the data beamed back from NASA's Galileo mission to Jupiter, which arrived at the planet in 1995 and carried 16 instruments, including two developed by CU-Boulder's LASP. Among other discoveries, Galileo scientists identified the global structure and dynamics of the planet's magnetic activity, confirmed the presence of ammonia clouds in its atmosphere and discovered that one of its moons, Europa, has a global ocean beneath a thick crust of ice.

"One of the biggest questions left after the Galileo mission was how much water there is in Jupiter's atmosphere," said Bagenal. "The amount of water is key, because water played a huge role in the formation of the solar system." Bagenal also is a professor in the astrophysical and planetary sciences department.

"Most of us know that water absorbs microwaves, because that is what happens when you put a cup of tea in your microwave oven," said Bagenal. "We are going to be using a microwave detector and fly just over the clouds of Jupiter, looking down at different cloud depths to measure the amounts of water below. It's a bit like doing a CT scan of Jupiter's dense clouds."

Bagenal's role in the mission is to coordinate observations of Jupiter's magnetosphere --the area of space around the planet that is controlled by its magnetic field. She and her collaborators are especially interested in understanding the processes that control auroral activity at the planet's poles -- its northern and southern lights -- and assess the roles of the planet's strong magnetic field on its surroundings.

In addition to collaborating closely with the Juno science team, Bagenal is working with CU-Boulder Professor Robert Ergun of LASP, who has extensively studied Earth's magnetosphere and associated polar auroras. Ergun will use his expertise in auroral physics as part of the mission to compare the physical processes at Jupiter with those seen on Earth.

"This will be the first time anyone has flown over the poles of Jupiter to look directly down on the aurora," said Bagenal. "We will be flying the spacecraft through regions where charged particles are accelerated to the point of bombarding the atmosphere of Jupiter hard enough to make it glow at the poles."

Bagenal also is working with LASP Research Associate Peter Delomere on the Jovian magnetosphere studies and with physics department graduate student Mariel Desroche, who is modeling the outer region of Jupiter's magnetosphere as part of the Juno effort.

CU-Boulder senior Dinesh Costlow of the astrophysical and planetary sciences department also is collaborating with Bagenal and the Juno science team by using computer models to simulate the trajectory of the spacecraft through all 33 individual orbits as it passes through Jupiter's magnetosphere. "We are interested in finding the optimal places in orbit to point the spacecraft for our data collection," he said.

Costlow, who is from Auburn, Maine, said he knew CU-Boulder had a good astronomy program before he ever set foot on campus. "Everything fell into place, and I feel very lucky to have an opportunity to work on this mission," Costlow said. "I think graduate school may be my next step, and after that maybe I can make a career out of this kind of planetary research."

By mapping Jupiter's gravitational and magnetic fields, mission scientists should be able to see the planet's interior structure and determine if it has a rocky iron core -- a core that some scientists believe could be 15 or 20 times the size of Earth. But because of the immense pressure in the Jovian atmosphere, any spacecraft seeking the core would be crushed long before it neared the middle of the planet, much as the Galileo spacecraft was crushed after it was crashed into the planet's clouds after the mission concluded in 2003.

"My biggest hope is that all of our predictions about Jupiter are wrong, and that we find something completely different than what we expect," said Bagenal. "When our preconceived notions are off, it shows us we can never become complacent. New data from the solar system's planets keeps us excited enough to re-visit them to learn more about the history and fate of our solar system."

The Juno spacecraft is carrying 11 experiments to probe the planet's mass, magnetic field, charged particles, auroras, plasma, radio waves, thermal and ultraviolet emissions, and includes a camera to provide images of the colorful Jovian cloud tops. The Juno Mission is being managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif. Lockheed Martin Space Systems Company of Denver built the spacecraft, which will be launched aboard a United Launch Alliance Atlas V rocket.

Fran Bagenal | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>