Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSI: Milky Way

06.03.2013
These days the core of the Milky Way galaxy is a pretty tame place...cosmically speaking. The galactic black hole at the center is a sleeping giant. Existing stars are peacefully circling. Although conditions are favorable, there doesn't even seem to be much new star formation going on.

But there is growing evidence that several million years ago the galactic center was the site of all manner of celestial fireworks. A pair of assistant professors – Kelly Holley-Bockelmann at Vanderbilt and Tamara Bogdanović at Georgia Institute of Technology – have come up with an explanation that fits these "forensic" clues.


This is an artist's illustration of a satellite galaxy falling into the submassive black hole at the center of the Milky Way galaxy.

Credit: Julie Turner, Vanderbilt University

Writing in the March 6 issue of the Monthly Notices of the Royal Astronomical Society, the astronomers describe how a single event – a violent collision and merger between the galactic black hole and an intermediate-sized black hole in one of the small "satellite galaxies" that circle the Milky Way – could have produced the features that point to a more violent past for the galactic core.

"Tamara and I had just attended an astronomy conference in Aspen, Colorado, where several of these new observations were announced," said Holley-Bockelmann. "It was January 2010 and a snow storm had closed the airport. We decided to rent a car to drive to Denver. As we drove through the storm, we pieced together the clues from the conference and realized that a single catastrophic event – the collision between two black holes about 10 million years ago - could explain all the new evidence."

The most dramatic of these extraordinary clues are the Fermi bubbles. These giant lobes of high-energy radiation - caused by particles moving nearly the speed of light - extend some 30,000 light years above and below the Milky Way center. If they were glowing in visible light they would fill about half of the night sky. But they radiate X-ray and gamma-ray light, so you need X-ray vision to see them. The discovery was reported by astronomers at the Harvard-Smithsonian Center for Astrophysics.

Another puzzling characteristic of the GC, the astronomer's abbreviation for the galactic center, is the fact that it contains the three most massive clusters of young stars in the entire galaxy. The Central, Arches and Quintuplet clusters each contain hundreds of young, hot stars that are much larger than the Sun. These stars typically burn out in "only" a few million years because of their extreme brightness, so there had to have been a relatively recent burst of star formation at the GC.

The supermassive black hole that dominates the center of the Milky Way weighs in at about four million solar masses and is roughly 40 light seconds in diameter: only nine times the size of the sun. Such an object produces intense gravitational tides. So astronomers were surprised to discover a number of clumps of bright new stars closer than three lights years from the black hole's maw. It wouldn't be that surprising if the stars were being sucked into the black hole, but they show every sign of having formed in place. For this to happen, the clouds of dust and gas that they formed from must have been exceptionally dense: 10,000 times thicker than the other molecular clouds in the GC.

While there is an excess of young hot stars in the galactic core, there is also a surprising dearth of older stars. Theoretical models predict that the density of old stars should increase as you move closer to the black hole. Instead, there are very few old stars found within several light years of the sleeping giant.

When she got home from the conference, Holley-Bockelmann recruited Vanderbilt graduate student Meagan Langto work on the problem with them. With the assistance of Pau Amaro-Seoane from the Max Planck Institute for Gravitational Physics in Germany, Alberto Sesana from the Institut de Ciències de l'Espai in Spain, and Vanderbilt Research Assistant Professor Manodeep Sinha, they came up with a theoretical model that fits the observations and makes some testable predictions.

The scenario began about 13 billion years ago, when the path of one of the smaller satellite galaxies orbiting the Milky Way is diverted so that it began drifting inward toward the core. According to a recent study, this may have happened dozens of times in the lifetime of the Milky Way. As the satellite galaxy – a collection of stars and gas with an intermediate-sized black hole with a mass equal to about 10,000 suns – spiraled in, most of its mass was gradually stripped away, finally leaving the black hole and a handful of gravitationally bound stars.

About 10 million years ago, the stripped down core of the satellite galaxy finally reached the galactic center. When two black holes merge, they first go through an elaborate dance. So the smaller black hole would have circled the galactic black hole for several million years before it was ultimately consumed.

As the smaller black hole circled closer and closer, it would have churned up the dust and gas in the vicinity and pushed enough material into the galactic black hole in the process to produce the Fermi bubbles.

The violent gravitational tides produced by the process could easily have compressed the molecular clouds in the core to the super densities required to produce the young stars that are now located on the central black hole's doorstep.

In addition, the vigorous churning would have swept out the existing stars from the area surrounding the massive central black hole. In fact, the astronomer's model predicts that the black holes' merger dance should have flung a large number of the missing old stars out into the galaxy at hyper velocities, thus explaining the absence of old stars immediately around the super-massive black hole.

"The gravitational pull of the satellite galaxy's black hole could have carved nearly 1,000 stars out of the galactic center," said Bogdanović.

"Those stars should still be racing through space, about 10,000 light years away from their original orbits."

It should be possible to detect these stars with large surveys like the Sloan Digital Sky Survey because these stars would be traveling at much higher velocities than stars that have not undergone this type of interaction. So discovery of a large number of "high velocity stars" racing outward through the galaxy would strongly support the proposed scenario of the Milky Way and satellite galaxy merger.

The research was supported by National Science Foundation Career Grant AST-0847696 and National Aviation and Space Administration grants NNX08AG74G and PF9-00061 as well as an NSF Graduate Research Fellowship.

Visit Research News @ Vanderbilt for more research news from Vanderbilt. [Media Note: Vanderbilt has a 24/7 TV and radio studio with a dedicated fiber optic line and ISDN line. Use of the TV studio with Vanderbilt experts is free, except for reserving fiber time.] -VU-

David Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>