Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryogenic testing completed for NASA's WEBB Telescope mirrors

22.12.2011
Cryogenic testing is complete for the final six primary mirror segments and a secondary mirror that will fly on NASA's James Webb Space Telescope. The milestone represents the successful culmination of a process that took years and broke new ground in manufacturing and testing large mirrors.

"The mirror completion means we can build a large, deployable telescope for space," said Scott Willoughby, vice president and Webb program manager at Northrop Grumman Aerospace Systems. "We have proven real hardware will perform to the requirements of the mission."


The James Webb Space Telescope mirrors have completed deep-freeze tests and are removed from the X-ray and Cryogenic test Facility at Marshall Space Flight Center. Credit: Credit: Emmett Given, NASA Marshall

The Webb telescope has 21 mirrors, with 18 mirror segments working together as a large 21.3-foot (6.5-meter) primary mirror. Each individual mirror segment now has been successfully tested to operate at 40 Kelvin (-387 Fahrenheit or -233 Celsius).

"Mirrors need to be cold so their own heat does not drown out the very faint infrared images," said Lee Feinberg, NASA Optical Telescope Element manager for the Webb telescope at the agency's Goddard Space Flight Center in Greenbelt, Md. "With the completion of all mirror cryogenic testing, the toughest challenge since the beginning of the program is now completely behind us."

Completed at the X-ray and Cryogenic Facility (XRCF) at NASA's Marshall Space Flight Center in Huntsville, Ala., a ten-week test series chilled the primary mirror segments to -379 degrees Fahrenheit. During two test cycles, telescope engineers took extremely detailed measurements of how each individual mirror's shape changed as it cooled. Testing verified each mirror changed shape with temperature as expected and each one will be the correct shape upon reaching the extremely cold operating temperature after reaching deep space.

"Achieving the best performance requires conditioning and testing the mirrors in the XRCF at temperatures just as cold as will be encountered in space," said Helen Cole, project manager for Webb Telescope mirror activities at the XRCF. "This testing ensures the mirrors will focus crisply in space, which will allow us to see new wonders in our universe."

Ball Aerospace and Technologies Corp. in Boulder, Colo. successfully completed comparable testing on the secondary mirror. However, because the secondary mirror is convex (i.e., it has a domed surface that bulges outward instead of a concave one that dishes inward like a bowl), it does not converge light to a focus. Testing the mirror presented a unique challenge involving a special process and more complex optical measurements.

The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. It will be most powerful space telescope ever built, provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For images related to this story, visit:
http://www.nasa.gov/topics/technology/features/webb-mirror-cryo.html
For more information about the Webb telescope, visit:
http://jwst.nasa.gov

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>