Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cryogenic testing completed for NASA's WEBB Telescope mirrors

22.12.2011
Cryogenic testing is complete for the final six primary mirror segments and a secondary mirror that will fly on NASA's James Webb Space Telescope. The milestone represents the successful culmination of a process that took years and broke new ground in manufacturing and testing large mirrors.

"The mirror completion means we can build a large, deployable telescope for space," said Scott Willoughby, vice president and Webb program manager at Northrop Grumman Aerospace Systems. "We have proven real hardware will perform to the requirements of the mission."


The James Webb Space Telescope mirrors have completed deep-freeze tests and are removed from the X-ray and Cryogenic test Facility at Marshall Space Flight Center. Credit: Credit: Emmett Given, NASA Marshall

The Webb telescope has 21 mirrors, with 18 mirror segments working together as a large 21.3-foot (6.5-meter) primary mirror. Each individual mirror segment now has been successfully tested to operate at 40 Kelvin (-387 Fahrenheit or -233 Celsius).

"Mirrors need to be cold so their own heat does not drown out the very faint infrared images," said Lee Feinberg, NASA Optical Telescope Element manager for the Webb telescope at the agency's Goddard Space Flight Center in Greenbelt, Md. "With the completion of all mirror cryogenic testing, the toughest challenge since the beginning of the program is now completely behind us."

Completed at the X-ray and Cryogenic Facility (XRCF) at NASA's Marshall Space Flight Center in Huntsville, Ala., a ten-week test series chilled the primary mirror segments to -379 degrees Fahrenheit. During two test cycles, telescope engineers took extremely detailed measurements of how each individual mirror's shape changed as it cooled. Testing verified each mirror changed shape with temperature as expected and each one will be the correct shape upon reaching the extremely cold operating temperature after reaching deep space.

"Achieving the best performance requires conditioning and testing the mirrors in the XRCF at temperatures just as cold as will be encountered in space," said Helen Cole, project manager for Webb Telescope mirror activities at the XRCF. "This testing ensures the mirrors will focus crisply in space, which will allow us to see new wonders in our universe."

Ball Aerospace and Technologies Corp. in Boulder, Colo. successfully completed comparable testing on the secondary mirror. However, because the secondary mirror is convex (i.e., it has a domed surface that bulges outward instead of a concave one that dishes inward like a bowl), it does not converge light to a focus. Testing the mirror presented a unique challenge involving a special process and more complex optical measurements.

The Webb telescope is the world's next-generation space observatory and successor to the Hubble Space Telescope. It will be most powerful space telescope ever built, provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For images related to this story, visit:
http://www.nasa.gov/topics/technology/features/webb-mirror-cryo.html
For more information about the Webb telescope, visit:
http://jwst.nasa.gov

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht A quantum spin liquid
24.10.2017 | Boston College

nachricht Single nanoparticle mapping paves the way for better nanotechnology
24.10.2017 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>