Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crossing scientific boundaries to understand the rejection of drugs

01.12.2008
A physicist from The University of Nottingham and a mathematical modeller from The University of Southampton are joining forces in the hope of answering a biological mystery — how do our bodies reject some of the drugs that are sent to cure us?

The £92,300 study is funded by the Medical Research Council through its ‘Discipline Hopping’ Awards scheme which aims to provoke new collaborations between the physical and life sciences.

For the next 12 months Dr Cyril Rauch, physicist and lecturer in the School of Veterinary Medicine and Science at Nottingham will be working with Dr Giles Richardson, from the School of Mathematical Sciences in Southampton to find out why and how the molecules that oppose drug entry into cells work.

Dr Rauch said: “I am a physicist who is very interested in complex systems such as biology. We will be working at the interface of science — mathematics, physics and biology. Drugs have got to have a molecule in the body to target. But a drug has to cross all the body tissues prior to reaching its target and this is incredibly tricky and very difficult from the drug standpoint. In particular, cells have specific proteins, namely membrane transporters, that impair the transverse movement of drugs by constantly extruding them — these are their natural defence mechanism to avoid toxicity. We have previously suggested and reported that the membrane of cells is central and that basic physics may shed light on this very complex transport of drugs to their target. In due course we aim to control drugs’ oral bioavailability and multi drug resistance.”

Dr Richardson, whose mathematical expertise is in modelling biological and electrochemical phenomena said: “When I first heard about it I was intrigued by multidrug resistance and, in particular, by the fact that, despite there being a number of well attested properties displayed by multidrug resistant cells, there is still no consensus on the mechanisms for this strange phenomenon. Furthermore I felt that the modelling techniques that I use could play an important role in testing out hypothetical mechanisms”.

Multidrug resistance is a major problem in the treatment of a variety of diseases including malaria, cancer and certain bacterial infections.

Transporters on the cell’s protective shield — its biomembrane — repel the drugs and are part of the mechanism that decides which particles are friend or foe. These cells will fight against drugs by putting in place drug entry systems. What Dr Rauch and Dr Richardson want to know is how and why a drug should come into contact with a transporter and be expelled and what leads to that rejection.

Research has already given us some clues as to why this happens but more work needs to be done. Together these two scientists, from very different academic backgrounds, will build on the work that has already been carried out. They want to model theoretically, using physics and mathematics, the process of drug resistance and compare these results with other experimental data.

They want to try and discover what holds the drug long enough in the membrane, which is just five nanometres thick, for it to defuse to the transporter. If they can impair diffusion of the drug to the transporter they should be able to help the drug pass safely through the membrane to the nucleus. The two scientists believe that rational mathematical modelling has an important role in explaining this phenomenon and will eventually lead to the development of new treatment regimes.

Understanding the physical biology of therapeutics crossing cells may well lead to the generation of new therapeutic strategies that will also target cellular compounds that drive and put in place the physical biology of cells.

Lindsay Brooke | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Understanding-the-rejection-of-drugs.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>