Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crossing scientific boundaries to understand the rejection of drugs

A physicist from The University of Nottingham and a mathematical modeller from The University of Southampton are joining forces in the hope of answering a biological mystery — how do our bodies reject some of the drugs that are sent to cure us?

The £92,300 study is funded by the Medical Research Council through its ‘Discipline Hopping’ Awards scheme which aims to provoke new collaborations between the physical and life sciences.

For the next 12 months Dr Cyril Rauch, physicist and lecturer in the School of Veterinary Medicine and Science at Nottingham will be working with Dr Giles Richardson, from the School of Mathematical Sciences in Southampton to find out why and how the molecules that oppose drug entry into cells work.

Dr Rauch said: “I am a physicist who is very interested in complex systems such as biology. We will be working at the interface of science — mathematics, physics and biology. Drugs have got to have a molecule in the body to target. But a drug has to cross all the body tissues prior to reaching its target and this is incredibly tricky and very difficult from the drug standpoint. In particular, cells have specific proteins, namely membrane transporters, that impair the transverse movement of drugs by constantly extruding them — these are their natural defence mechanism to avoid toxicity. We have previously suggested and reported that the membrane of cells is central and that basic physics may shed light on this very complex transport of drugs to their target. In due course we aim to control drugs’ oral bioavailability and multi drug resistance.”

Dr Richardson, whose mathematical expertise is in modelling biological and electrochemical phenomena said: “When I first heard about it I was intrigued by multidrug resistance and, in particular, by the fact that, despite there being a number of well attested properties displayed by multidrug resistant cells, there is still no consensus on the mechanisms for this strange phenomenon. Furthermore I felt that the modelling techniques that I use could play an important role in testing out hypothetical mechanisms”.

Multidrug resistance is a major problem in the treatment of a variety of diseases including malaria, cancer and certain bacterial infections.

Transporters on the cell’s protective shield — its biomembrane — repel the drugs and are part of the mechanism that decides which particles are friend or foe. These cells will fight against drugs by putting in place drug entry systems. What Dr Rauch and Dr Richardson want to know is how and why a drug should come into contact with a transporter and be expelled and what leads to that rejection.

Research has already given us some clues as to why this happens but more work needs to be done. Together these two scientists, from very different academic backgrounds, will build on the work that has already been carried out. They want to model theoretically, using physics and mathematics, the process of drug resistance and compare these results with other experimental data.

They want to try and discover what holds the drug long enough in the membrane, which is just five nanometres thick, for it to defuse to the transporter. If they can impair diffusion of the drug to the transporter they should be able to help the drug pass safely through the membrane to the nucleus. The two scientists believe that rational mathematical modelling has an important role in explaining this phenomenon and will eventually lead to the development of new treatment regimes.

Understanding the physical biology of therapeutics crossing cells may well lead to the generation of new therapeutic strategies that will also target cellular compounds that drive and put in place the physical biology of cells.

Lindsay Brooke | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>