Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crooked light

17.10.2013
Astronomers detect gravitational lens at record distance – and can hardly believe their luck

A team of astronomers led by Arjen van der Wel from the Max Planck Institute for Astronomy (MPIA) has found the most distant gravitational lens yet – a galaxy that, as predicted by Albert Einstein's general theory of relativity, deflects and intensifies the light of an even more distant object.


Gravitational lens at the border of visibility: Light from the massive object that is acting as a lens needs 9.4 billion years to reach us. The foreground galaxy (the lensing mass) shows up in orange, and the background galaxy that is magnified by the lens into an Einstein Ring is seen in blue. The diameter of the Einstein ring is only 0.7 arcseconds corresponding to a size of 19,000 light-years at the distance of the lens. The colour image was created from three separate images from two different instruments aboard the Hubble Space Telescope: two near-infrared images from the Wide Field Camera 3 and one image from the Advanced Camera for Surveys.

© MPIA / Arjen van der Wel

The discovery provides a rare opportunity to directly measure the mass of a distant galaxy. But it also poses a mystery: Lenses of this kind should be exceedingly rare! Given this and recent other finds, astronomers either have been phenomenally lucky – or, more likely, they have underestimated substantially the number of small, very young galaxies in the early universe.

Light is affected by gravity, and light passing a distant galaxy will be deflected as a result. Since the first find in 1979, numerous such gravitational lenses have been discovered. In addition to providing tests of Einstein's theory of general relativity, gravitational lenses have proved to be valuable tools. Notably, one can determine the mass of the matter that is bending the light – including the mass of the still-enigmatic Dark Matter, which does not emit or absorb light and can only be detected via its gravity. Also, the lens magnifies the background light source, acting as a natural telescope that allows astronomers a more detailed look at distant galaxies than what is normally possible.

Gravitational lenses consist of two objects: One that is further away and supplies the light, and the other, the lensing mass or gravitational lens, which sits between us and the distant light source, and whose gravity deflects the light. When the observer, the lens, and the distant light source are precisely aligned, the observer sees an Einstein ring: a perfect circle of light that is the projected and greatly magnified image of the distant light source.

Now, astronomers have found the most distant gravitational lens yet. MPIA's Arjen van der Wel explains: "The discovery was completely by chance. I had been reviewing observations from an earlier project with the goal of measuring masses of old, distant galaxies by looking at the motion of their stars. Among the galaxy spectra" – the rainbow-like split of a galaxy's light into myriads of different shades of color – I noticed a galaxy that was decidedly odd. It looked like an extremely young galaxy, and at an even larger distance than I was aiming for. It shouldn't even have been part of our observing program!

Van der Wel followed up the spectra, which were taken with the Large Binocular Telescope in Arizona, by looking at images taken with the Hubble Space Telescope as part of the CANDELS and COSMOS surveys. The object looked like an old galaxy, a plausible target for the original observing program, but with some irregular features which, he suspected, meant that he was looking at a gravitational lens. Combining the available images and removing the haze of the lensing galaxy's collection of stars, the result was very clear: an almost perfect Einstein ring, indicating a gravitational lens with very precise alignment of the lens and the background light source (0.01 arcseconds).

The lensing mass is so distant that the light, after having been deflected, has travelled 9.4 billion years to reach us (redshift z = 1.53; compare this with the total age of the universe of 13.8 billion years). The previous record holder was found thirty years ago, and it took less than 8 billion years for its light to reach us (z ∼ 1).

Not only is this a new record, the object also serves an important purpose: The amount of distortion caused by the lensing galaxy allows for a direct measurement of its mass. This provides an independent test for astronomers' usual methods of estimating distant galaxy masses – which rely on extrapolation from their nearby cousins. Fortunately for astronomers, their usual methods pass the test.

But the discovery also poses a puzzle. Gravitational lenses are the result of a chance alignment. In this case, the alignment is very precise. To make matters worse, the magnified object is a so-called star-bursting dwarf galaxy: a comparatively light galaxy (only about 100 million solar masses' worth of stars), but extremely young (about 10 – 40 million years old) and producing new stars at an enormous rate. The chances for such peculiar galaxies to be gravitationally lensed are very small. Yet this is the second star-bursting dwarf galaxy found to be lensed. Either the astronomers have been phenomenally lucky. Or starbursting dwarf galaxies are much more common than previously thought, forcing astronomers to re-think their models of galaxy evolution.

Van der Wel concludes: "This has been a weird and interesting discovery. It was a completely serendipitous find, it combines two rather disparate topics I have been working on – massive, old galaxies, and young, starbursting dwarfs –, and it has the potential to start a new chapter in our description of galaxy evolution in the early universe."

Contact

Dr. Arjen van der Wel
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-461
Email: vdwel@­mpia.de
Dr. Markus Pössel
Press & Public Relations
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email: poessel@­mpia.de
Original publication
Arjen van der Wel et al.
Discovery of a quadruple lens in CANDELS with a record lens redshift z=1.53
Astrophysical Journal Letters, 17 October 2013

Dr. Arjen van der Wel | Max-Planck-Institute
Further information:
http://www.mpg.de/7569693/gravitational-lens-record-distance

More articles from Physics and Astronomy:

nachricht Nanostructures taste the rainbow
29.06.2017 | California Institute of Technology

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>