Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRISM Prepares for Mars-Grazing Comet Siding Spring

13.10.2014

On October 19, a comet that has travelled many billions of miles will come within about 87,000 miles of Mars – about one-third of the distance of the Moon from Earth. Comet Siding Spring comes from the Oort Cloud, material left over from the formation of the solar system. “This comet is coming into the solar system straight from the Oort Cloud. It’s likely this is its first time this close to the sun,” said space scientist David Humm, of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

Oort Cloud material, including comets, is scattered through a vast region that begins outside the orbits of Neptune and Pluto and extends a substantial fraction of the distance to Proxima Centauri, the closest neighboring star. Oort Cloud comets can tell scientists about the materials – including water and carbon compounds – that existed during the formation of the solar system some 4.6 billion years ago.


Image Credit: NASA

Artist's concept of comet Siding Spring (C/2013 A1) heading toward Mars.

Studying this close encounter will be the largest fleet of orbiting scientific observatories ever flown to another world, orbiting around (and rolling on the ground of) Mars. These instruments will, for the first time ever, have the chance to make close-up observations of a comet new to the inner solar system. And though it will not be the easiest task, the teams operating these instruments and spacecraft have developed plans to take advantage of this rare opportunity.

“The close fly-by of Mars by Comet Siding Spring is unique, unexpected, and lucky for us,” said Humm, who serves as instrument scientist for the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), built by APL, and one of the instruments on board NASA’s Mars Reconnaissance Orbiter (MRO) that will observe Siding Spring.

Two other MRO instruments observing the comet will be the High Resolution Imaging Science Experiment (HiRISE), a very high-definition camera, and the Context Imager (CTX). Together, all three imagers will attempt to capture data about Siding Spring that is unobtainable from Earth. Though Earth-based observations of Siding Spring will reveal a great deal of information, “CRISM has a significant advantage due to its proximity to the comet at closest approach,” he said.

“CRISM is both a spectrometer and a camera,” Humm explained. “It can identify molecules by the light they emit and characterize minerals by the light they reflect. We can then make an image of any material we identify, and see its distribution. If we’re fortunate, CRISM will be able to detect some features in the comet gas and dust, and we can make images of the distribution of different gases detected and learn something about the nature of the dust.”

There are some challenges. First, though the chances of any comet dust impacting the spacecraft are thought to be very minimal, the decision was made to “hide” the spacecraft in the shadow of Mars after the comet passes, to let the planet absorb any potentially damaging high-speed dust particles that may trail the comet as it passes by.

The greater problem, explained Humm, is that “these instruments are designed for looking at the surface of Mars during daytime, not at a far dimmer comet in the night sky.” But the teams have overcome that challenge as well, and now have full observation plans for Siding Spring.

Siding Spring is small (the nucleus is less than a mile in diameter) and fast (it will pass Mars at about 34 miles per second). CRISM, HiRISE, and CTX were built to study a slowly-moving planet, so they will use MRO’s ability to rotate in order to capture images as the comet speeds by Mars. The instruments will observe the comet repeatedly for two and a half days as it gets closer and closer to Mars before it makes its closest approach. The peak density of comet dust at Mars is expected 98 minutes after closest approach of the nucleus, and the MRO spacecraft will position itself behind the planet at that time.

Last year’s October 1 encounter with Comet ISON – a sungrazing comet that passed within 6.5 million miles of Mars – gave the teams on CRISM and the other Mars observatories a good chance to practice looking at an object hurtling past the planet.

The instruments on MRO are unique in their abilities to study the comet. “HiRISE is the only instrument that can image the nucleus of Comet Siding Spring with more than one pixel, and CRISM will have the best signal-to-noise ratio of any spectrometer that will observe the comet from close up,” Humm said.

Still, comet behaviors are peculiar and may seem random; sometimes they fizzle out, sometimes they get very bright, sometimes they do both. “Comets are very unpredictable,” said Humm. “No two ever seem to be the same. A new comet like Siding Spring will bring surprises.”

Images from Earth-based observatories and the Hubble Space Telescope have shown a typical coma of gas and dust develop as Comet Siding Spring has come closer to the sun. The coma may be larger or smaller when the comet flies by Mars. “If the comet is really active, then we will get good spectra of the coma,” Humm explained. “If the comet is inactive, then some of the compositional results could be in question but we may still see broad color differences.”

For Humm and other scientists on the CRISM and other MRO teams, an event like the encounter with Siding Spring was not even considered during construction and launch of the orbiter and its instruments back in 2005.

“I would have been very surprised if you had told me we were going to use CRISM to look at a comet,” Humm said. "The likelihood of being this close to a new comet is really very small, and we're operating well beyond our design lifetime, so this exciting an opportunity is completely unexpected."

Contact Information

Geoffrey Brown
Public Information Officer
geoffrey.brown@jhuapl.edu
Phone: 240-228-5618

Geoffrey Brown | newswise
Further information:
http://www.jhuapl.edu/newscenter/

Further reports about: Applied Physics CRISM CTX Cloud HiRISE Johns Hopkins Laboratory MRO Mars gas and dust observations small solar system spacecraft

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>