Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crews complete first block of North America’s most advanced neutrino experiment

07.09.2012
Today, technicians in Minnesota will begin to position the first block of a detector that will be part of the largest, most advanced neutrino experiment in North America.

The NuMI Off-Axis Neutrino Appearance experiment – NOvA for short – will study the properties of neutrinos, such as their masses, and investigate whether they helped give matter an edge over antimatter after both were created in equal amounts in the big bang. The experiment is on track to begin taking data in 2013.

“This is a significant step toward a greater understanding of neutrinos,” said Marvin Marshak, NOvA laboratory director and director of undergraduate research at the University of Minnesota. “It represents many months of hard work on the part of the whole NOvA collaboration.”

Neutrinos are elementary particles, basic building blocks of matter in the Standard Model of particle physics. They are almost massless, and they interact so rarely with other matter that they can move straight through hundreds of miles of solid rock.

The NOvA experiment will study a beam of neutrinos streaming about 500 miles through the Earth from the U.S. Department of Energy’s Fermi National Accelerator Laboratory near Chicago to a large detector in Ash River, Minnesota. The particles, generated in what will be the most powerful neutrino beam in the world, will make the trip in less than three milliseconds.

Today, crews will use a 750,000-pound pivoter machine to lift the first 417,000-pound block – one of 28 that will make up the detector – and put it in place at the end of the 300-foot-long detector hall. The delicate process may take multiple days.

Each block of the detector measures 51 by 51 by 7 feet and is made up of 384 plastic PVC modules. About 170 students from the University of Minnesota built the modules, stringing them with optical fibers and attaching their endcaps.

Scientists and engineers at the Department of Energy’s Argonne National Laboratory developed the machine that glues modules into blocks. Scientists and engineers at Fermilab developed the pivoter machine and assembly table.

“About a dozen scientists, engineers and technicians from Fermilab and Argonne have been up to Ash River multiple times in the past year to make this thing happen,” said Rick Tesarek, Fermilab physicist and NOvA deputy project leader. “They’re part of a team of over a hundred collaborators who have been actively working on the experiment.”

Once the block is installed, crews will fill it with liquid scintillator. When neutrinos interact with the liquid, they will produce charged particles that will release light, which the optical fiber will detect. The fiber will carry the signal to electronics, which will record the neutrino event.

Neutrinos come in three flavors, each associated with a different elementary particle: electron, muon and tau. Three different types of neutrinos oscillate between these flavors, spending a different fraction of their lives as each flavor.

“Everyone’s been watching to see which experiment will make the next big step in uncovering the properties of neutrinos,” said Mark Messier, Indiana University physicist and co-spokesperson of the NOvA experiment. “The NOvA experiment should be it. It is uniquely positioned to be the first experiment to determine the ordering of the masses of the three neutrinos.”

Officials first broke ground on the NOvA detector facility, a laboratory of the University of Minnesota’s School of Physics and Astronomy, in May 2009. Crews completed the building this spring.

The experiment will use two detectors, a 330-metric-ton near detector at Fermilab and the 14-kiloton far detector at the detector facility close to the U.S.-Canadian border, to look for changes in the neutrino beam as it travels. The far detector is scheduled to begin taking data in 2013 and to be completed in early 2014.

An upgrade of the Fermilab neutrino beam, now in progress during a yearlong accelerator shutdown, will be crucial to the experiment. Fermilab will increase the power of the beam by a factor of two from 320 kilowatts to 700 kilowatts. NOvA experimenters expect eventually to study a sample of about 100 neutrino events collected during six years of operation.

The NOvA experiment is a collaboration of 169 scientists from 19 universities and laboratories in the U.S and another 15 institutions around the world.

Fermilab is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance, LLC. Visit Fermilab’s website at http://www.fnal.gov and follow us on Twitter at @FermilabToday.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Media Contacts:
Andre Salles, Fermi National Accelerator Laboratory, 630-840-6733, media@fnal.gov
Rhonda Zurn, University of Minnesota College of Science and Engineering, 612-626-7959, rzurn@umn.edu
Jared Sagoff, Argonne National Laboratory, 630-252-5549, media@anl.gov
Science Contacts:
Marvin Marshak, NOvA Laboratory Director, University of Minnesota, 612-624-1312, marshak@umn.edu
Mark Messier, NOvA Co-spokesperson, Indiana University, 812-855-0236, messier@indiana.edu

Pat Lukens, NOvA Assembly and Installation Manager, Fermilab, 218-374-2400 x2001, ptl@fnal.gov

Additional Information:
NOvA website: http://www-nova.fnal.gov/
NOvA: Exploring Neutrino Mysteries [video]:
http://www.youtube.com/watch?v=Fe4veClYxkE&list=UUD5B6VoXv41fJ-IW8Wrhz9A&index=1&feature=plcp

Andre Salles | EurekAlert!
Further information:
http://science.energy.gov
http://www.fnal.gov

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>