Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creating the astro-comb to locate Earth-like planets

12.05.2009
A new way of reading light will sharpen the view of planets around other stars

Thanks to the ability of astronomers to detect the presence of extrasolar planets orbiting distant stars, scientists today are able to examine hundreds of solar systems. Now researchers at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. have created an "astro-comb" to help astronomers detect lighter planets, more like Earth, around distant stars.

The Harvard group will present their findings at the 2009 Conference on Lasers and Electro Optics/International Quantum Electronics Conference (CLEO/IQEC), which takes place May 31 to June 5 at the Baltimore Convention Center.

In most cases, extrasolar planets can't be seen directly—the glare of the nearby star is too great—but their influence can be discerned through spectroscopy, which analyzes the energy spectrum of the light coming from the star. Not only does spectroscopy reveal the identity of the atoms in the star (each element emits light at a certain characteristic frequency), it can also tell researchers how fast the star is moving away or toward Earth, courtesy of the Doppler effect, which occurs whenever a source of waves is itself in motion. By recording the change in the frequency of the waves coming from or bouncing off of an object, scientists can deduce the velocity of the object.

This process is used to judge the speed of automobiles, storm systems, fastballs, and stars. How can it be used to deduce the presence of a planet? Though the planet might weigh millions of times less than the star, the star will be jerked around a tiny amount owing to the gravity interaction between star and planet. This jerking motion causes the star to move toward or away from Earth slightly in a way that depends on the planet's mass and its nearness to the star. The better the spectroscopy used in this whole process, the better will be the identification of the planet in the first place and the better will be the determination of planetary properties.

Right now standard spectroscopy techniques can determine star movements to within a few meters per second (m/sec). In tests, the Harvard researchers are now able to calculate star velocity shifts of less than 1 m/sec, allowing them to more accurately pinpoint the planet's location.

Smithsonian researcher David Phillips says that he and his colleagues expect to reach a velocity resolution of 60 cm/sec, and maybe even 1 cm/sec, which when applied to the activities of large telescopes presently under construction, would open new possibilities in astronomy and astrophysics, including simpler detection of more Earth-like planets.

With this new approach, Harvard astronomers achieve their great improvement using a frequency comb as the basis for the astro-comb. A special laser system is used to emit light not at a single energy but a series of energies (or frequencies), evenly spaced across a wide range of values. A plot of these narrowly-confined energy components would look like the teeth of a comb, hence the name frequency comb. The energy of these comb-like laser pulses is known so well that they can be used to calibrate the energy of light coming in from the distant star. In effect, the frequency comb approach sharpens the spectroscopy process. The resultant astro-comb should enable a further expansion of extrasolar planetary detection.

The astro-comb method has been tried out on a medium-sized telescope in Arizona and will soon be installed on the much larger William Herschel Telescope, which resides on a mountaintop in the Canary Islands.

Presentation CMII1, "Femtosecond Laser Frequency Comb for Precision Astrophysical Spectroscopy," Chih-Hao Li et al, 3:45 p.m., Monday, June 1.

ABOUT CLEO/IQEC

With a distinguished history as one of the industry's leading events on laser science, the Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference (CLEO/IQEC) is where laser technology was first introduced. CLEO/IQEC combines the strength of peer-reviewed scientific programming with an applications-focused exhibition to showcase the present and future of this technology. Sponsored by the American Physical Society's (APS) Laser Science Division, the Institute of Electronic Engineers (IEEE) Photonics Society and the Optical Society (OSA), CLEO/IQEC provides an educational forum, complete with a dynamic Plenary, short courses, tutorials, workshops and more, on topics as diverse as its attendee base whose broad spectrum of interests range from biomedicine to defense to optical communications and beyond. For more information, visit the conference's Web site at www.cleoconference.org.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org
http://www.cleoconference.org

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>