Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creasing to cratering: Voltage breaks down plastic

04.03.2011
A Duke University team has seen for the first time how soft polymers, such as wire insulation, can break down under exposure to electrical current.

Researchers have known for decades that polymers, such those insulating wires, may break down due to deformation of the polymers. But the process had never been seen.

In a series of experiments, Duke University engineers have documented at the microscopic level how plastic deforms to breakdown as it is subjected to ever-increasing electric voltage. Polymers can be found almost everywhere, most commonly as an insulator for electrical wires, cables and capacitors.

The findings by the Duke engineers could help in developing new materials to improve the durability and efficiency of any polymer that must come into contact with electrical currents, as well as in the emerging field of energy harvesting.

"We have long known that these polymers will eventually break down, or fail, when subjected to an increasing electrical voltage," said Xuanhe Zhao, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. He is the senior scientist in the series of experiments performed by a graduate student Qiming Wang and published online in the Physical Review Letters. "Now we can actually watch the process as it happens in real time."

The innovation the Duke team developed was attaching the soft polymer to another rigid polymer layer, or protective substrate, which enabled observation of the deformation process without incurring the breakdown. They then subjected this polymer-substrate unit to various electrical voltages and observed the effects under a microscope.

"As bread dough rises in a bowl, the top surface of the dough may fold in upon itself to form creases due to compressive stresses developing in the dough," Zhao said, "Surprisingly, this phenomenon may be related to failures of electrical polymers that are widely used in energy-related applications."

"When the voltage reached a critical point, the compressive stress induced a pattern of creases, or folds, on the polymer," Zhao. "If the voltage is increased further, the creases evolved into craters or divots in the polymer as the electrical stress pulls the creases open. Polymers usually break down electrically immediately after the creasing, which can cause failures of insulating cables and organic capacitors."

The substrate the researchers developed for the experiments not only allowed for the visualization of the creasing-to-cratering phenomenon, it could also be the foundation of a new approach to improving the ability of wires to carry electricity.

The research was supported by startup funds provided by Pratt.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>