Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creasing to cratering: Voltage breaks down plastic

04.03.2011
A Duke University team has seen for the first time how soft polymers, such as wire insulation, can break down under exposure to electrical current.

Researchers have known for decades that polymers, such those insulating wires, may break down due to deformation of the polymers. But the process had never been seen.

In a series of experiments, Duke University engineers have documented at the microscopic level how plastic deforms to breakdown as it is subjected to ever-increasing electric voltage. Polymers can be found almost everywhere, most commonly as an insulator for electrical wires, cables and capacitors.

The findings by the Duke engineers could help in developing new materials to improve the durability and efficiency of any polymer that must come into contact with electrical currents, as well as in the emerging field of energy harvesting.

"We have long known that these polymers will eventually break down, or fail, when subjected to an increasing electrical voltage," said Xuanhe Zhao, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. He is the senior scientist in the series of experiments performed by a graduate student Qiming Wang and published online in the Physical Review Letters. "Now we can actually watch the process as it happens in real time."

The innovation the Duke team developed was attaching the soft polymer to another rigid polymer layer, or protective substrate, which enabled observation of the deformation process without incurring the breakdown. They then subjected this polymer-substrate unit to various electrical voltages and observed the effects under a microscope.

"As bread dough rises in a bowl, the top surface of the dough may fold in upon itself to form creases due to compressive stresses developing in the dough," Zhao said, "Surprisingly, this phenomenon may be related to failures of electrical polymers that are widely used in energy-related applications."

"When the voltage reached a critical point, the compressive stress induced a pattern of creases, or folds, on the polymer," Zhao. "If the voltage is increased further, the creases evolved into craters or divots in the polymer as the electrical stress pulls the creases open. Polymers usually break down electrically immediately after the creasing, which can cause failures of insulating cables and organic capacitors."

The substrate the researchers developed for the experiments not only allowed for the visualization of the creasing-to-cratering phenomenon, it could also be the foundation of a new approach to improving the ability of wires to carry electricity.

The research was supported by startup funds provided by Pratt.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>