Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Creasing to cratering: Voltage breaks down plastic

04.03.2011
A Duke University team has seen for the first time how soft polymers, such as wire insulation, can break down under exposure to electrical current.

Researchers have known for decades that polymers, such those insulating wires, may break down due to deformation of the polymers. But the process had never been seen.

In a series of experiments, Duke University engineers have documented at the microscopic level how plastic deforms to breakdown as it is subjected to ever-increasing electric voltage. Polymers can be found almost everywhere, most commonly as an insulator for electrical wires, cables and capacitors.

The findings by the Duke engineers could help in developing new materials to improve the durability and efficiency of any polymer that must come into contact with electrical currents, as well as in the emerging field of energy harvesting.

"We have long known that these polymers will eventually break down, or fail, when subjected to an increasing electrical voltage," said Xuanhe Zhao, assistant professor of mechanical engineering and materials science at Duke's Pratt School of Engineering. He is the senior scientist in the series of experiments performed by a graduate student Qiming Wang and published online in the Physical Review Letters. "Now we can actually watch the process as it happens in real time."

The innovation the Duke team developed was attaching the soft polymer to another rigid polymer layer, or protective substrate, which enabled observation of the deformation process without incurring the breakdown. They then subjected this polymer-substrate unit to various electrical voltages and observed the effects under a microscope.

"As bread dough rises in a bowl, the top surface of the dough may fold in upon itself to form creases due to compressive stresses developing in the dough," Zhao said, "Surprisingly, this phenomenon may be related to failures of electrical polymers that are widely used in energy-related applications."

"When the voltage reached a critical point, the compressive stress induced a pattern of creases, or folds, on the polymer," Zhao. "If the voltage is increased further, the creases evolved into craters or divots in the polymer as the electrical stress pulls the creases open. Polymers usually break down electrically immediately after the creasing, which can cause failures of insulating cables and organic capacitors."

The substrate the researchers developed for the experiments not only allowed for the visualization of the creasing-to-cratering phenomenon, it could also be the foundation of a new approach to improving the ability of wires to carry electricity.

The research was supported by startup funds provided by Pratt.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>