Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crashing comets may explain mysterious lunar swirls

02.06.2015

Brown University researchers have produced new evidence that lunar swirls -- wispy bright regions scattered on the moon's surface -- were created by several comet collisions over the last 100 million years.

In a paper published in the journal Icarus, the researchers use state-of-the-art computer models to simulate the dynamics of comet impacts on the lunar soil. The simulations suggest that such impacts can account for many of the features in the mysterious swirls.


A closer look at the Reiner Gamma.

Courtesy of NASA/Lunar Reconnaissance Orbiter

'We think this makes a pretty strong case that the swirls represent remnants of cometary collisions,' said Peter Schultz, a planetary geoscientist at Brown University. Schultz co-wrote the paper with his former graduate student, Megan Bruck-Syal, who is now a researcher at the Lawrence Livermore National Laboratory.

Lunar swirls have been the source of debate for years. The twisting, swirling streaks of bright soil stretch, in some cases, for thousands of miles across the lunar surface. Most are found on the unseen far side of the moon, but one famous swirl called Reiner Gamma can be seen by telescope on the southwestern corner of the moon's near side. 'It was my favorite object to look at when I was an amateur astronomer,' Schultz said.

At first glance, the swirls do not appear to be related to large impact craters or any other topography. 'They simply look as if someone had finger-painted the surface,' Schultz said. 'There has been an intense debate about what causes these features.'

In the 1970s, scientists discovered that many of the swirls were associated with anomalies of the moon's crustal magnetic field. That revelation led to one hypothesis for how the swirls may have formed. Rocks below the surface in those spots might contain remanent magnetism from early in the moon's history, when its magnetic field was much stronger than it is now. It had been proposed that those strong, locally trapped magnetic fields deflect the onslaught of the solar wind, which was thought to slowly darken the moon's surface. The swirls would remain brighter than the surrounding soil because of those magnetic shields.

But Schultz had a different idea for how the swirls may form -- one that has its roots in watching the lunar modules land on the moon during the Apollo program.

'You could see that the whole area around the lunar modules was smooth and bright because of the gas from the engines scoured the surface,' Schultz said. 'That was part of what got me started thinking comet impacts could cause the swirls.'

Comets carry their own gaseous atmosphere called a coma. Schultz thought that when small comets slam into the moon's surface -- as they occasionally do -- the coma may scour away loose soil from the surface, not unlike the gas from the lunar modules. That scouring may produce the bright swirls.

Schultz first published a paper outlining the idea in the journal Nature in 1980. That paper focused on how the scouring of the delicate upper layer of lunar soils could produce brightness consistent with the swirls. The structure of the grains in the upper layer (termed the 'fairy castle structure' because of the way grains stick together) scatters the sun's rays, causing a dimmer and darker appearance. When this structure is stripped away, the remaining smoothed surface would be brighter than unaffected areas, especially when the sun's rays strike it at certain angles. For Reiner Gamma on the lunar nearside, those areas appear brightest during the crescent moon just before sunrise.

As computer simulations of impact dynamics have gotten better, Schultz and Bruck-Syal decided it might be time to take a second look at whether comet impacts could produce that kind of scouring. Their new simulations showed that the impact of a comet coma plus its icy core would indeed have the effect of blowing away the smallest grains that sit atop the lunar soil. The simulations showed that the scoured area would stretch for perhaps thousands of kilometers from the impact point, consistent with the swirling streaks that extend across the moon's surface. Eddies and vortices created by the gaseous impact would explain the swirls' twisty, sinuous appearance.

The comet impact hypothesis could also explain the presence of magnetic anomalies near the swirls. The simulations showed that a comet impact would melt some of the tiny particles near the surface. When small, iron-rich particles are melted and then cooled, they record the presence of any magnetic field that may be present at the time. 'Comets carry with them a magnetic field created by streaming charged particles that interact with the solar wind,' Schultz said. 'As the gas collides with the lunar surface, the cometary magnetic field becomes amplified and recorded in the small particles when they cool.'

Taken together, the results offer a more complete picture of how the swirls form, the researchers say.

'This is the first time anyone has looked at this using modern computational techniques,' Schultz said. 'Everything we see in simulations of comet impacts is consistent with the swirls as we see them on the moon. We think this process provides a consistent explanation, but may need new moon missions to finally resolve the debate.'

Kevin Stacey | EurekAlert!

Further reports about: Comets Crashing Crashing comets Gamma lunar magnetic field solar wind structure

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>