Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crashing comets not likely the cause of Earth's mass extinctions

03.08.2009
Scientists have debated how many mass extinction events in Earth's history were triggered by a space body crashing into the planet's surface.

Most agree that an asteroid collision 65 million years ago brought an end to the age of dinosaurs, but there is uncertainty about how many other extinctions might have resulted from asteroid or comet collisions with Earth.

In fact, astronomers know the inner solar system has been protected at least to some degree by Saturn and Jupiter, whose gravitational fields can eject comets into interstellar space or sometimes send them crashing into the giant planets. That point was reinforced last week (July 20) when a huge scar appeared on Jupiter's surface, likely evidence of a comet impact.

New University of Washington research indicates it is highly unlikely that comets have caused any mass extinctions or have been responsible for more than one minor extinction event. The work also shows that many long-period comets that end up in Earth-crossing orbits likely originate from a region astronomers have long believed could not produce observable comets. A long-period comet takes from 200 years to tens of millions of years to make a single orbit of the sun.

"It was thought the long-period comets we see just tell us about the outer Oort Cloud, but they really give us a murky picture of the entire Oort Cloud," said Nathan Kaib, a University of Washington doctoral student in astronomy and lead author of a paper on the work being published July 30 in Science Express, the online edition of the journal Science.

The Oort Cloud is a remnant of the nebula from which the solar system formed 4.5 billion years ago. It begins about 93 billion miles from the sun (1,000 times Earth's distance from the sun) and stretches to about three light years away (a light year is about 5.9 trillion miles). The Oort Cloud could contain billions of comets, most so small and distant as to never be observed.

There are about 3,200 known long-period comets. Among the best-remembered is Hale-Bopp, which was easily visible to the naked eye for much of 1996 and 1997 and was one of the brightest comets of the 20th century. By comparison, Halley's comet, which reappears about every 75 years, is perhaps the best-known comet, but it is a short-period comet, most of which are believed to originate in a different part of the solar system called the Kuiper Belt.

It has been believed that nearly all long-period comets that move inside Jupiter to Earth-crossing trajectories originated in the outer Oort Cloud. Their orbits can change when they are nudged by the gravity of a neighboring star as it passes close to the solar system, and it was thought such encounters only affect very distant outer Oort Cloud bodies.

It also was believed that inner Oort Cloud bodies could reach Earth-crossing orbits only during the rare close passage of a star, which would cause a comet shower. But it turns out that even without a star encounter, long-period comets from the inner Oort Cloud can slip past the protective barrier posed by the presence of Jupiter and Saturn and travel a path that crosses Earth's orbit.

In the new research, Kaib and co-author Thomas Quinn, a UW astronomy professor and Kaib's doctoral adviser, used computer models to simulate the evolution of comet clouds in the solar system for 1.2 billion years. They found that even outside the periods of comet showers, the inner Oort Cloud was a major source of long-period comets that eventually cross Earth's path.

By assuming the inner Oort Cloud as the only source of long-period comets, they were able to estimate the highest possible number of comets in the inner Oort Cloud. The actual number is not known. But by using the maximum number possible, they determined that no more than two or three comets could have struck Earth during what is believed to be the most powerful comet shower of the last 500 million years.

"For the past 25 years, the inner Oort Cloud has been considered a mysterious, unobserved region of the solar system capable of providing bursts of bodies that occasionally wipe out life on Earth," Quinn said. "We have shown that comets already discovered can actually be used to estimate an upper limit on the number of bodies in this reservoir."

With three major impacts taking place nearly simultaneously, it had been proposed that the minor extinction event about 40 million years ago resulted from a comet shower. Kaib and Quinn's research implies that if that relatively minor extinction event was caused by a comet shower, then that was probably the most-intense comet shower since the fossil record began.

"That tells you that the most powerful comet showers caused minor extinctions and other showers should have been less severe, so comet showers are probably not likely causes of mass extinction events," Kaib said.

He noted that the work assumes the area surrounding the solar system has remained relatively unchanged for the last 500 million years, but it is unclear whether that is really the case. It is clear, though, that Earth has benefitted from having Jupiter and Saturn standing guard like giant catchers mitts, deflecting or absorbing comets that might otherwise strike Earth.

"We show that Jupiter and Saturn are not perfect and some of the comets from the inner Oort Cloud are able to leak through. But most don't," Kaib said.

For more information, contact Kaib at 206-616-4549, 206-375-1048 or kaib@astro.washington.edu; or Quinn at 206-685-9009 or trq@astro.washington.edu.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>