Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Question of Extraterrestrial Life

08.08.2008
Finding current geologic activity on Jupiter's moon Europa would present NASA the best opportunity for exploring the moon's vast ocean trapped beneath its icy exterior where many experts suggest life could exist.

With average temperatures of minus 260 degrees Fahrenheit, an almost nonexistent atmosphere and a complex web of cracks in a layer of ice encompassing the entire surface, the environment on Jupiter’s moon Europa is about as alien as they come.

So are the enormous forces behind the surface display, namely an ocean beneath the ice nine times deeper than Earth’s deepest ocean trench and gravitational affects from a planet 318 times the mass of Earth.

For nearly a decade, it has been Simon Kattenhorn’s passion to understand the amazing surface features on Europa and how they are formed. And supported by new grants from NASA, his research may provide clues to one of Mankind’s biggest questions—is there life outside of Earth?

... more about:
»Earth »Extraterrestrial »Jupiter »Saturn’s

Kattenhorn—an associate professor of geology at the University of Idaho—delights in dissecting the beautiful and complex web of cracks, faults and ridges on the surface of Jupiter’s fourth largest moon. The first of his two recent grants totaling $358,000 will allow him to study the most recent geological features on the highest resolution photos NASA has to offer of Europa. These subtle cracks will reveal if there is any current geological activity on the distant moon, which would also be the best place to look for signs of life.

“In order to really get at the issue, ‘Is there life out there?’, we have to know the best place to look,” said Kattenhorn, who is also currently authoring a chapter for a book on the moon. “And in the case of Europa, the best place to look is where cracks on its icy surface are active today.”

But finding signs for current geological activity is no easy task. Kattenhorn can tell a lot about fractures because they form very specific patterns that allow him to unravel their relative ages. His goal in this project is to find the youngest fractures and compare them to the tidal forces that Europa would be experiencing today to see if the features and recent forces match up.

Although there is some debate over how thick Europa’s outer shell of ice is—some say over 20 miles and some claim only a few—it is generally agreed that it covers an ocean more than 60 miles deep. This means that although Europa is only about the size of our moon, it has more water than Earth.

As the moon orbits Jupiter, it gets closer and further from the giant planet, changing the amount of gravitational pull it experiences. The result is that the moon is constantly being squeezed and released like a balloon full of water, which causes cracks and fissures, raising the question of the possibility of geysers, like the ones recently spotted on Saturn’s moon Enceladus.

Recent photos from the Cassini spacecraft passing by Enceladus revealed stunning plumes of water-ice jetting out into space. The discovery sent a flurry of excitement and activity through the academic community, including Kattenhorn, whose second recent NASA grant will allow him to apply what he’s learned from Europa to studies on Enceladus.

The discovery also led to a renewed vigor to study and explore Europa in order to find out if similar, active processes might be occurring today.

“This research feeds that need that I have as a geologist and as a person to be the explorer, to be the adventurer, to see things that no one else has seen before and figure out things that no one else has figured out before,” said Kattenhorn of his research into the two moons. “And out in the solar system is a great place to do that, because there are some things—like the plumes on Enceladus—that we really are seeing for the very first time.”

Only a few decades ago, nobody would have believed any form of life could exist on or in an icy moon like Europa. But recent discoveries of amazingly adaptive bacteria in some of Earth’s harshest environments have led to the speculation that it is possible.

“Europa has the potential for something very similar to hydrothermal systems we have here in our oceans,” said Susan Childers, head of the geomicrobiology research team at the University of Idaho, who studies life in extreme environments. “Very ancient organisms that thrive on oxidized metals could potentially be centered on one of these oases formed by heat and metals seeping from cracks in the ocean floor.”

The search for extraterrestrial life has long guided NASA’s choices in mission planning. Currently, NASA is in the process of choosing its next flagship mission; the most ambitious, long-term programs that often provide the most data. The choices include sending a satellite to explore Saturn’s moon Titan, Europa or the entire Jupiter system, meaning there is a two in three chance the next major mission will include Europa. This makes research detailing where to look—or maybe even land with a probe — that much more important.

But even if further exploration of Europa wasn’t a possibility, Kattenhorn would still be eager to study the fascinating moon.

“We don’t walk around on Earth with our eyes closed. We want to know what’s going on; why things happen,” said Kattenhorn. “It’s like Galileo looking through his telescope all those centuries ago and going, ‘Gosh! What’s out there?’ It’s that same spirit of exploration and I just get a real kick out of that.”

About the University of Idaho
Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 150 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities.

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu

Further reports about: Earth Extraterrestrial Jupiter Saturn’s

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>