Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the Question of Extraterrestrial Life

08.08.2008
Finding current geologic activity on Jupiter's moon Europa would present NASA the best opportunity for exploring the moon's vast ocean trapped beneath its icy exterior where many experts suggest life could exist.

With average temperatures of minus 260 degrees Fahrenheit, an almost nonexistent atmosphere and a complex web of cracks in a layer of ice encompassing the entire surface, the environment on Jupiter’s moon Europa is about as alien as they come.

So are the enormous forces behind the surface display, namely an ocean beneath the ice nine times deeper than Earth’s deepest ocean trench and gravitational affects from a planet 318 times the mass of Earth.

For nearly a decade, it has been Simon Kattenhorn’s passion to understand the amazing surface features on Europa and how they are formed. And supported by new grants from NASA, his research may provide clues to one of Mankind’s biggest questions—is there life outside of Earth?

... more about:
»Earth »Extraterrestrial »Jupiter »Saturn’s

Kattenhorn—an associate professor of geology at the University of Idaho—delights in dissecting the beautiful and complex web of cracks, faults and ridges on the surface of Jupiter’s fourth largest moon. The first of his two recent grants totaling $358,000 will allow him to study the most recent geological features on the highest resolution photos NASA has to offer of Europa. These subtle cracks will reveal if there is any current geological activity on the distant moon, which would also be the best place to look for signs of life.

“In order to really get at the issue, ‘Is there life out there?’, we have to know the best place to look,” said Kattenhorn, who is also currently authoring a chapter for a book on the moon. “And in the case of Europa, the best place to look is where cracks on its icy surface are active today.”

But finding signs for current geological activity is no easy task. Kattenhorn can tell a lot about fractures because they form very specific patterns that allow him to unravel their relative ages. His goal in this project is to find the youngest fractures and compare them to the tidal forces that Europa would be experiencing today to see if the features and recent forces match up.

Although there is some debate over how thick Europa’s outer shell of ice is—some say over 20 miles and some claim only a few—it is generally agreed that it covers an ocean more than 60 miles deep. This means that although Europa is only about the size of our moon, it has more water than Earth.

As the moon orbits Jupiter, it gets closer and further from the giant planet, changing the amount of gravitational pull it experiences. The result is that the moon is constantly being squeezed and released like a balloon full of water, which causes cracks and fissures, raising the question of the possibility of geysers, like the ones recently spotted on Saturn’s moon Enceladus.

Recent photos from the Cassini spacecraft passing by Enceladus revealed stunning plumes of water-ice jetting out into space. The discovery sent a flurry of excitement and activity through the academic community, including Kattenhorn, whose second recent NASA grant will allow him to apply what he’s learned from Europa to studies on Enceladus.

The discovery also led to a renewed vigor to study and explore Europa in order to find out if similar, active processes might be occurring today.

“This research feeds that need that I have as a geologist and as a person to be the explorer, to be the adventurer, to see things that no one else has seen before and figure out things that no one else has figured out before,” said Kattenhorn of his research into the two moons. “And out in the solar system is a great place to do that, because there are some things—like the plumes on Enceladus—that we really are seeing for the very first time.”

Only a few decades ago, nobody would have believed any form of life could exist on or in an icy moon like Europa. But recent discoveries of amazingly adaptive bacteria in some of Earth’s harshest environments have led to the speculation that it is possible.

“Europa has the potential for something very similar to hydrothermal systems we have here in our oceans,” said Susan Childers, head of the geomicrobiology research team at the University of Idaho, who studies life in extreme environments. “Very ancient organisms that thrive on oxidized metals could potentially be centered on one of these oases formed by heat and metals seeping from cracks in the ocean floor.”

The search for extraterrestrial life has long guided NASA’s choices in mission planning. Currently, NASA is in the process of choosing its next flagship mission; the most ambitious, long-term programs that often provide the most data. The choices include sending a satellite to explore Saturn’s moon Titan, Europa or the entire Jupiter system, meaning there is a two in three chance the next major mission will include Europa. This makes research detailing where to look—or maybe even land with a probe — that much more important.

But even if further exploration of Europa wasn’t a possibility, Kattenhorn would still be eager to study the fascinating moon.

“We don’t walk around on Earth with our eyes closed. We want to know what’s going on; why things happen,” said Kattenhorn. “It’s like Galileo looking through his telescope all those centuries ago and going, ‘Gosh! What’s out there?’ It’s that same spirit of exploration and I just get a real kick out of that.”

About the University of Idaho
Founded in 1889, the University of Idaho is the state’s flagship higher-education institution and its principal graduate education and research university, bringing insight and innovation to the state, the nation and the world. University researchers attract nearly $100 million in research grants and contracts each year; the University of Idaho is the only institution in the state to earn the prestigious Carnegie Foundation ranking for high research activity. The university’s student population includes first-generation college students and ethnically diverse scholars. Offering more than 150 degree options in 10 colleges, the university combines the strengths of a large university with the intimacy of small learning communities.

Ken Kingery | Newswise Science News
Further information:
http://www.uidaho.edu

Further reports about: Earth Extraterrestrial Jupiter Saturn’s

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>