Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crab Pulsar Emits Light at Higher Energies Than Expected

12.10.2011
Detection defies current pulsar models, leads to new theories

Pulsars--highly magnetized, rotating stars--were first discovered more than 40 years ago, and are now believed to be a type of stellar leftover, or remnant--in this case, a neutron star--that results from the explosion and gravitational collapse of a more massive star.

In the October 7 issue of Science, astrophysicists with VERITAS report an unexpected finding in the Crab Pulsar, which is the central star in the Crab Nebula in the constellation of Taurus. They detected pulsed gamma rays, or light energy, above one hundred thousand million electron volts. The detection cannot be explained with current pulsar models that show pulsed gamma rays in the range of a few hundred million electron volts to a few thousand million electron volts. The finding is causing researchers to consider new theories about gamma-ray production. More on the discovery can be found in press releases by the Harvard-Smithsonian Center for Astrophysics, University of California, Los Angeles, University of California, Santa Cruz and others. The paper, online in Science today, had 95 coauthors, including scientists from 26 institutions in five countries, who are part of the VERITAS collaboration.

Left is an artist's conception of the VERITAS array of imaging atmospheric Cherenkov telescopes (IACTs) observing the Crab Nebula. IACTs detect high-energy gamma-rays. Also seen is a very high energy gamma-ray originating from the Crab Nebula producing an airshower in the high atmopshere. The telescopes observe the Cherenkov radiation produced by the energetic electrons in the airshower. Right is an artist's conception of the pulsar at the center of the Crab Nebula, with a Hubble Space Telescope photo of the nebula in the background.

VERITAS, or Very Energetic Radiation Imaging Telescope Array System, is a ground-based observatory for gamma-ray astronomy located at the Fred Lawrence Whipple Observatory in southern Arizona. It is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England and Canada. VERITAS is funded by the U.S. National Science Foundation, U.S. Department of Energy Office of Science, Smithsonian Institution, Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and Science and Technology Facilities Council of the United Kingdom.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Program Contacts
James Whitmore, NSF (703) 292-8908 jwhitmor@nsf.gov
Co-Investigators
Rene Ong, University of California, Los Angeles (310) 825-3622 rene@astro.ucla.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=121926&org=NSF&from=news

Further reports about: Crab Nebula IACTs NSF Science TV Telescope VERITAS gamma rays nebula

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>