Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crab Pulsar Emits Light at Higher Energies Than Expected

12.10.2011
Detection defies current pulsar models, leads to new theories

Pulsars--highly magnetized, rotating stars--were first discovered more than 40 years ago, and are now believed to be a type of stellar leftover, or remnant--in this case, a neutron star--that results from the explosion and gravitational collapse of a more massive star.

In the October 7 issue of Science, astrophysicists with VERITAS report an unexpected finding in the Crab Pulsar, which is the central star in the Crab Nebula in the constellation of Taurus. They detected pulsed gamma rays, or light energy, above one hundred thousand million electron volts. The detection cannot be explained with current pulsar models that show pulsed gamma rays in the range of a few hundred million electron volts to a few thousand million electron volts. The finding is causing researchers to consider new theories about gamma-ray production. More on the discovery can be found in press releases by the Harvard-Smithsonian Center for Astrophysics, University of California, Los Angeles, University of California, Santa Cruz and others. The paper, online in Science today, had 95 coauthors, including scientists from 26 institutions in five countries, who are part of the VERITAS collaboration.

Left is an artist's conception of the VERITAS array of imaging atmospheric Cherenkov telescopes (IACTs) observing the Crab Nebula. IACTs detect high-energy gamma-rays. Also seen is a very high energy gamma-ray originating from the Crab Nebula producing an airshower in the high atmopshere. The telescopes observe the Cherenkov radiation produced by the energetic electrons in the airshower. Right is an artist's conception of the pulsar at the center of the Crab Nebula, with a Hubble Space Telescope photo of the nebula in the background.

VERITAS, or Very Energetic Radiation Imaging Telescope Array System, is a ground-based observatory for gamma-ray astronomy located at the Fred Lawrence Whipple Observatory in southern Arizona. It is operated by a collaboration of more than 100 scientists from 22 different institutions in the United States, Ireland, England and Canada. VERITAS is funded by the U.S. National Science Foundation, U.S. Department of Energy Office of Science, Smithsonian Institution, Natural Sciences and Engineering Research Council of Canada, Science Foundation Ireland, and Science and Technology Facilities Council of the United Kingdom.

Media Contacts
Bobbie Mixon, NSF (703) 292-8070 bmixon@nsf.gov
Lisa Van Pay, NSF (703) 292-8796 lvanpay@nsf.gov
Program Contacts
James Whitmore, NSF (703) 292-8908 jwhitmor@nsf.gov
Co-Investigators
Rene Ong, University of California, Los Angeles (310) 825-3622 rene@astro.ucla.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov
http://www.nsf.gov/news/news_summ.jsp?cntn_id=121926&org=NSF&from=news

Further reports about: Crab Nebula IACTs NSF Science TV Telescope VERITAS gamma rays nebula

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>