Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing the Cosmos Through "Warm" Infrared Eyes

NASA's Spitzer Space Telescope has taken its first shots of the cosmos since warming up and starting its second career. The infrared telescope ran out of coolant on May 15, 2009, more than five-and-half-years after launch, and has since warmed to a still-frosty 30 Kelvin (about minus 406 Fahrenheit).

New images taken with two of Spitzer's infrared detector channels -- the two that work at the new warmer temperature -- demonstrate that the observatory remains a powerful tool for probing the dusty universe. The images show a bustling star-forming region, the pretty remains of a star like the sun, and a swirling galaxy lined with stars.

"Spitzer continues to provide us with a unique view of stars, galaxies and planets," said Spitzer Project Scientist Michael Werner, NASA's Jet Propulsion Laboratory, Pasadena, Calif.

"We're thrilled to see Spitzer up and running again, and continuing to provide such spectacular images," added astronomer Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics. "This new lease on life is a testament to a well-designed spacecraft."

The first of three images shows a cloud bursting with stars in the Cygnus region of our Milky Way galaxy. Spitzer's infrared eyes both peer through and see dust, revealing young stars tucked in dusty nests. A second image shows a nearby dying star -- a planetary nebula called NGC 4361 -- whose outer layers expand outward in the rare form of four jets. And a final picture is of a classic spiral beauty, a galaxy called NGC 4145 located 68 million light-years from Earth.

"With Spitzer's remaining shorter-wavelength bands, we can continue to see through the dust in galaxies and get a better look at the overall populations of stars," said Robert Hurt imaging specialist for Spitzer at NASA's Spitzer Science Center, California Institute of Technology. "All stars are equal in the infrared."

Since its launch from Cape Canaveral, Fla., on August 25, 2003, Spitzer has made countless discoveries: planet-forming disks around stars, the composition of the material making up comets, hidden black holes, galaxies billions of light-years away and more.

Perhaps the most revolutionary and surprising Spitzer finds involve planets around other stars, called exoplanets. In 2005, Spitzer detected the first actual photons of light from an exoplanet. In a clever technique, now referred to as the secondary-eclipse method, Spitzer was able to collect the light of a hot, gaseous exoplanet and learn about its temperature. Further detailed studies later revealed more about the composition and structure of the atmospheres of these exotic worlds.

Warm Spitzer will address many of the same science questions as before, while tackling new projects, such as: refining estimates of Hubble's constant, or the rate at which our universe is stretching apart; searching for galaxies at the edge of the universe; characterizing more than 700 near-Earth objects, or asteroids and comets with orbits that pass close to our planet; and studying the atmospheres of gas-giant planets expected to be discovered soon by NASA's Kepler mission. As was true during the cold Spitzer mission, these and the other programs are selected via a competition in which scientists from around the world are invited to participate.

Spitzer officially began its warm science mission on July 27, 2009. The new pictures were taken while the telescope was being re-commissioned, on July 18 (NGC 4145, NGC 4361) and July 21 (Cygnus).

For more information about Spitzer, visit and

This release is being issued jointly with NASA.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA. Spitzer's infrared array camera was built by NASA's Goddard Space Flight Center, Greenbelt, Md. The instrument's principal investigator is Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
Whitney Clavin
Jet Propulsion Laboratory

Christine Pulliam | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>