Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cosmos is green: Researchers catch nature in the act of 'recycling' a star

26.05.2009
Ordinary 'slow' pulsar transforms into fast-spinning millisecond pulsar

For the first time, researchers have observed a singular cosmic act of rebirth: the transformation of an ordinary, slow-rotating pulsar into a superfast millisecond pulsar with an almost infinitely extended lifespan.

The discovery was made during a large radio sky survey by an international team of astrophysicists at McGill University, the University of British Columbia (UBC), West Virginia University, the U.S. National Radio Astronomy Observatory (NRAO) and several other institutions in the United States, the Netherlands and Australia.

The sky survey used the Robert C. Byrd radio telescope at Green Bank, West Virginia to observe nearly a third of the celestial sphere. The team's results will be published online by the journal Science on May 21.

The discovery was made by astrophysics PhD candidate Anne Archibald and her supervisor, Prof. Victoria Kaspi of the McGill Pulsar Group. "This survey has found many new pulsars, but this one is truly special -- it is a very freshly 'recycled' pulsar that is emerging straight from the recycling plant." said Archibald. The McGill researchers worked with Asst. Prof. Ingrid Stairs of UBC and Scott Ransom of NRAO as well as others from the collaboration to carry out more observations of this unusual pulsar.

Pulsars are rapidly rotating, highly magnetized neutron stars, the remnants left after massive stars have exploded as supernovae. Pulsars emit lighthouse-like beams of radio waves that sweep around as the star rotates. Most rotate relatively slowly, ten times a second or less, and their magnetic fields ordinarily slow them down even further over the course of millennia. Millisecond pulsars, however, rotate hundreds of times a second.

"We know normal pulsars typically pulsate in the radio spectrum for one million to ten million years, but eventually they slow down enough to die out," explained Kaspi. "But a few of these old pulsars get 'recycled' into millisecond pulsars. They end up spinning extremely fast, and then they can pulsate forever. How does nature manage to be so green?"

It has long been theorized that millisecond pulsars are created in double-star systems when matter from the companion star falls into the pulsar's gravity well and increases the rotation speed, but until now the process has never been observed directly.

"Imagine a ping-pong ball in the bathtub, and then you take the plug out of the drain," explained Archibald. "All the water swirling around the ping-pong ball suddenly makes it spin a lot faster than when it was just bobbing on the surface.

"We've seen systems that are undergoing spin-up, because when the matter is falling in, the stars get really bright in X-rays and they're easy to see," she added. "But we've never seen radio pulsations from these stars during the process of spin-up. At last we've found a true radio pulsar that shows direct evidence for having just been recycled."

The pulsar found by the survey team was fortuitously observed by an independent, optical research group to have had swirling matter surrounding it roughly a decade ago -- the blink of an eye in astronomical time. That group recorded the observation as puzzling, never dreaming that a full-fledged radio pulsar would emerge.

"In other words, for the first time, we have caught a glimpse at an actual cosmic recycling factory in action," said Ingrid Stairs of UBC, who has been visiting the Australia Telescope National Facility and Swinburne University of Technology this year. "This system gives us an unparalleled cosmic laboratory for studying how millisecond pulsars evolve and get reborn."

Other major contributors to this study include Dr. Maura McLaughlin and Dr. Duncan Lorimer of West Virginia University and Dr. Scott Ransom of NRAO. In addition to the GBT, the scientists also used the Westerbork radio telescope in the Netherlands, the Arecibo radio telescope in Puerto Rico, and the Parkes radio telescope in Australia during their study.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>