Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The cosmos is green: Researchers catch nature in the act of 'recycling' a star

Ordinary 'slow' pulsar transforms into fast-spinning millisecond pulsar

For the first time, researchers have observed a singular cosmic act of rebirth: the transformation of an ordinary, slow-rotating pulsar into a superfast millisecond pulsar with an almost infinitely extended lifespan.

The discovery was made during a large radio sky survey by an international team of astrophysicists at McGill University, the University of British Columbia (UBC), West Virginia University, the U.S. National Radio Astronomy Observatory (NRAO) and several other institutions in the United States, the Netherlands and Australia.

The sky survey used the Robert C. Byrd radio telescope at Green Bank, West Virginia to observe nearly a third of the celestial sphere. The team's results will be published online by the journal Science on May 21.

The discovery was made by astrophysics PhD candidate Anne Archibald and her supervisor, Prof. Victoria Kaspi of the McGill Pulsar Group. "This survey has found many new pulsars, but this one is truly special -- it is a very freshly 'recycled' pulsar that is emerging straight from the recycling plant." said Archibald. The McGill researchers worked with Asst. Prof. Ingrid Stairs of UBC and Scott Ransom of NRAO as well as others from the collaboration to carry out more observations of this unusual pulsar.

Pulsars are rapidly rotating, highly magnetized neutron stars, the remnants left after massive stars have exploded as supernovae. Pulsars emit lighthouse-like beams of radio waves that sweep around as the star rotates. Most rotate relatively slowly, ten times a second or less, and their magnetic fields ordinarily slow them down even further over the course of millennia. Millisecond pulsars, however, rotate hundreds of times a second.

"We know normal pulsars typically pulsate in the radio spectrum for one million to ten million years, but eventually they slow down enough to die out," explained Kaspi. "But a few of these old pulsars get 'recycled' into millisecond pulsars. They end up spinning extremely fast, and then they can pulsate forever. How does nature manage to be so green?"

It has long been theorized that millisecond pulsars are created in double-star systems when matter from the companion star falls into the pulsar's gravity well and increases the rotation speed, but until now the process has never been observed directly.

"Imagine a ping-pong ball in the bathtub, and then you take the plug out of the drain," explained Archibald. "All the water swirling around the ping-pong ball suddenly makes it spin a lot faster than when it was just bobbing on the surface.

"We've seen systems that are undergoing spin-up, because when the matter is falling in, the stars get really bright in X-rays and they're easy to see," she added. "But we've never seen radio pulsations from these stars during the process of spin-up. At last we've found a true radio pulsar that shows direct evidence for having just been recycled."

The pulsar found by the survey team was fortuitously observed by an independent, optical research group to have had swirling matter surrounding it roughly a decade ago -- the blink of an eye in astronomical time. That group recorded the observation as puzzling, never dreaming that a full-fledged radio pulsar would emerge.

"In other words, for the first time, we have caught a glimpse at an actual cosmic recycling factory in action," said Ingrid Stairs of UBC, who has been visiting the Australia Telescope National Facility and Swinburne University of Technology this year. "This system gives us an unparalleled cosmic laboratory for studying how millisecond pulsars evolve and get reborn."

Other major contributors to this study include Dr. Maura McLaughlin and Dr. Duncan Lorimer of West Virginia University and Dr. Scott Ransom of NRAO. In addition to the GBT, the scientists also used the Westerbork radio telescope in the Netherlands, the Arecibo radio telescope in Puerto Rico, and the Parkes radio telescope in Australia during their study.

Mark Shainblum | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>