Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmochemists from Münster precisely date Jupiter’s formation for the first time

13.06.2017

Jupiter is the oldest planet of the Solar System, as scientists from the University of Münster now found out. They determined Jupiter’s age using meteorites and showed: At four million years after Solar System formation Jupiter was fully formed.

Jupiter is not only the largest planet of the Solar System, but it is also the oldest, say researchers from the University of Münster. They, for the first time, determined a precise age of Jupiter, which was previously only approximately known.


Close-up view of Jupiter from "Voyager 1"

© NASA

One problem has always been that there are no samples from Jupiter and, therefore, that no direct measurements were possible. Now, the researchers have determined Jupiter’s age using meteorites. The study is published in the online Early Edition of "Proceedings of the National Academy of Science of the United States of America".

The study found that Jupiter reached a size of about 20 Earth masses in less than one million years after Solar System formation at 4.567 billion years ago. Once Jupiter had reached 20 Earth masses, it took another roughly three million years for it to grow to its full mass.

"Although Jupiter is so massive, it grew extremely fast in less than four million years. Although theoretical models predicted such a rapid growth, these predictions were very uncertain", says Dr. Thomas Kruijer, first author of the study. For comparison, it took about 100 million years to form the Earth, which is only 1/380th the mass of Jupiter.

To determine the age of Jupiter, the researchers used meteorites, fragments of asteroids that today reside in a belt between Mars and Jupiter. The scientists used isotope measurements to show that the asteroids originally derive from two distinct regions of the Solar System, one within and the other beyond the orbit of Jupiter. The fact that material from beyond Jupiter is present in meteorites is a fundamentally new and surprising finding, the researchers emphasize. They used the isotopic compositions of the meteorites as a genetic fingerprint to deduce the relationships between different meteorites.

20 Earth masses in less than one million years

Through dating the meteorites, the researchers showed that asteroids from inside and outside Jupiter’s orbit formed between one and four million years after Solar System formation. "During that period there was no material exchange between the two regions. This lack of mixing can be explained through the formation of Jupiter. Model calculations showed that once Jupiter reached about 20 Earth masses, it prevented material exchange across its orbit", explains Thorsten Kleine, professor at the University of Münster and senior author of the study. Conversely, this then means that Jupiter must have grown to 20 Earth masses within the first million year of Solar System history.

At four million years Jupiter is fully formed

The 20 Earth masses correspond to the mass of Jupiter’s solid core. Once that core had formed, the growth of Jupiter continued through accretion of gas. This process was relatively slow initially until Jupiter reached a mass of about 50 Earth masses. The researchers were able to determine that point in time, because once Jupiter reached 50 Earth masses it started to scatter material from beyond its orbit into the inner Solar System. "That process cannot have started before the meteorite parent bodies stopped forming, because otherwise we would have found isotopic evidence for mixing of outer and inner Solar System materials", explains Thomas Kruijer who works at Lawrence Livermore National Laboratory in California (USA) now. Because there is no evidence for such mixing in meteorites that formed about four million years after Solar System formation, the researchers concluded that Jupiter reached 50 Earth masses no earlier than four million years. At this point Jupiter then was sufficiently large to start a process called runaway gas accretion, allowing it to reach its final mass of 384 Earth’s masses very quickly.

Implications for the early evolution of the Solar System

The rapid growth of Jupiter has far-reaching implications for understanding the early history of the Solar System and the formation of the four inner (terrestrial) planets Mercury, Venus, Earth and Mars, the researchers say. Jupiter’s growth led to scattering of water-rich asteroids into the inner Solar System, where these bodies may have been incorporated into the Earth. As such, water-rich asteroids are likely candidates for the source of water on Earth. But the rapid growth of Jupiter also inhibited significant mass transport into the inner Solar System, potentially explaining why Mars is so small and also why our Solar System, in contrast to many extrasolar systems, has no super-Earths (that is, large terrestrial planets). "That we have material that initally formed beyond Jupiter is a completely new and suprising finding. It will dramatically change our view on early Solar System history", says Thorsten Kleine.

The work was carried out as part of the Collaborative Research Centre Transregio 170 entitled "Late accretion onto terrestrial planets" at Münster University and was supported with funding from the German Research Foundation as well as from the European Research Council.

Original publication:

T.S. Kruijer, C. Burkhardt, G. Budde and T. Kleine (2017): Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proceedings of the National Academy of Science of the United States of America (Early Edition); doi:10.1073/pnas.1704461114

Weitere Informationen:

http://www.uni-muenster.de/Planetology/en/ifp/personen/kleine_thorsten/profil.sh... Prof. Thorsten Kleine (Professorship for experimental and analytical planetology)

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-muenster.de/

Further reports about: Asteroids Earth Jupiter Mars meteorites rapid growth terrestrial planets

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>