Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic debris: Study looks inside the universe's most powerful explosions

10.04.2015

Finding sets the stage for discoveries from the next generation of neutrino telescopes

A new study provides an inside look at the most powerful explosions in the universe: gamma-ray bursts.

These rare explosions happen when extremely massive stars go supernova. The stars' strong magnetic fields channel most of the explosion's energy into two powerful plasma jets, one at each magnetic pole. The jets spray energetic particles for light-years in both directions, at close to light speed.

On Earth, we detect bits of the resulting debris as gamma rays. Researchers also suspect--but haven't been able to prove conclusively--that GRBs are the source of at least some of the cosmic rays and neutrinos that pepper our planet from space.

Now, physicists at The Ohio State University and their colleagues have begun to answer that question. By building some of the most detailed computer simulations ever made of a GRB jet's internal structure, they have been able to model particle production inside of it.

Their finding--that the non-uniform internal structure of the jets is key to determining the emission of the different kinds of astroparticles--appears online April 10 in the journal Nature Communications. The study also raises new questions that can be answered only by the next generation of neutrino telescopes.

Mauricio Bustamante, a Fellow of the Center for Cosmology and AstroParticle Physics at Ohio State, explained that the new computer model is a natural outgrowth of recent findings in astroparticle physics, such as the first confirmed cosmic neutrinos detected at the IceCube Neutrino Observatory at the South Pole in 2013.

"Previously, the details of the non-uniformity of the GRB jets were not too important in our models, and that was a totally valid assumption--up until IceCube saw the first cosmic neutrinos a couple of years ago," he said. "Now that we have seen them, we can start excluding some of our initial predictions, and we decided to go one step further and do this more complex analysis."

With partners at Penn State and the DESY national research center in Germany, Bustamante wrote new computer code to take into account the shock waves that are likely to occur within the jets. They simulated what would happen when blobs of plasma in the jets collided, and calculated the particle production in each region.

In their model, some regions of the jet are denser than others, and some plasma blobs travel faster than others.

Bustamante offered the analogy of the plasma jet as a long highway, albeit one where the cars are traveling at different speeds close to the speed of light.

"Everywhere on the highway there are fast-moving cars, but some of them will be fast sports cars, while others will be extra-fast Formula 1 racers. They will collide all over the highway, and when they do they will create debris. The debris always contains neutrinos, cosmic rays and gamma rays, but, depending on where the collisions occurred, one of these will typically dominate the emission," he said.

"If the cars collide close to the beginning of the highway, where the concentration of cars is higher, the debris will be mostly neutrinos. As they race along the highway, the concentration of cars goes down, and so when a collision occurs halfway through the length of the highway, the debris will be mostly cosmic rays. Further down the road, the concentration is even lower, and the gamma rays that we observe at Earth are produced in the collisions at this stage."

The amount of debris that reaches Earth depends on how energetic the star is and how far away it is.

One implication of the model is that the rate of neutrino production in GRBs might be lower than previously thought, so only a minimal number--say, 10 percent--of neutrinos detected on Earth are likely to come from GRBs. The density of neutrinos that reach Earth is called the neutrino flux, and the model predicts that the likely neutrino flux from GRBs is below the threshold of detection for today's neutrino telescopes.

"We expect that the next generation of neutrino telescopes, such as IceCube-Gen-2, will be sensitive to this minimal flux that we're predicting," Bustamante said. Then astrophysicists can use the model to refine notions of GRB internal structure and better understand the sources of cosmic particles detected on Earth.

Co-authors on the paper were Philipp Baerwald and Kohta Murase of the Institute for Gravitation and the Cosmos at Penn State and Walter Winter of DESY in Germany.

This work was funded by NASA, the German Research Foundation, and the U.S. National Science Foundation.

Contact: Mauricio Bustamante, (614) 292-0734; Bustamanteramirez.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Media Contact

Pam Frost Gorder
Gorder.1@osu.edu
614-292-9475

 @osuresearch

http://news.osu.edu 

Pam Frost Gorder | EurekAlert!

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>